JavaCard (erste Schritte)
Erste Schritte: Installation einer Beispielanwendung
Hier erfolgt zunächst der erste Test der Funktionalität der SmartCard durch Installation eines Applets, das eine einfache Guthabenkarte implementiert, hier Simple Wallet[1].
Installiert und angesprochen kann die JavaCard mittels GlobalPlatformPro[2].
Installiert wird die Applikation durch:
java -jar gp.jar -install simplewallet.cap -default
Angesprochen wird die Karte durch APDU Kommandos[3][4]. Vor jeder Operation wird das Simple Wallet Applet mit ihrer AID F000A0000E00
ausgewählt.
Guthaben verändern
Das Guthaben kann beispielsweise mit der APDU B040000001[AMOUNT, 1 Bytes]
erhöht werden:
java -jar gp.jar -a "00A4040006F000A0000E0000" -a "B04000000105" -debug -verbose
Ausgabe:
GlobalPlatformPro v20.01.23-0-g5ad373b Running on Linux 5.15.0-48-generic amd64, Java 17.0.4 by Private Build # Detected readers from JNA2PCSC [*] REINER SCT cyberJack RFID basis 00 00 SCardConnect("REINER SCT cyberJack RFID basis 00 00", T=*) -> T=1, 3B80800101 SCardBeginTransaction("REINER SCT cyberJack RFID basis 00 00") Reader: REINER SCT cyberJack RFID basis 00 00 ATR: 3B80800101 More information about your card: http://smartcard-atr.appspot.com/parse?ATR=3B80800101 A>> T=1 (4+0006) 00A40400 06 F000A0000E00 00 A<< (0000+2) (33ms) 9000 A>> T=1 (4+0001) B0400000 01 05 A<< (0000+2) (25ms) 9000 A>> T=1 (4+0000) 00A40400 00 A<< (0018+2) (19ms) 6F108408A000000151000000A5049F6501FF 9000 [TRACE] GPSession - [6F] [TRACE] GPSession - [84] A000000151000000 [TRACE] GPSession - [A5] [TRACE] GPSession - [9F65] FF [DEBUG] GPSession - Auto-detected ISD: A000000151000000 SCardEndTransaction("REINER SCT cyberJack RFID basis 00 00") SCardDisconnect("REINER SCT cyberJack RFID basis 00 00", true) tx:23/rx:24
Alternativ kann das Guthaben auch mit B030000001[AMOUNT, 1 Bytes]
reduziert werden. Die Antwort 0x9000
steht hier für "Erfolgreich".
Guthaben auslesen
Das Guthaben kann dann mit der APDU B050000002
ausgelesen werden:
java -jar gp.jar -a "00A4040006F000A0000E0000" -a "B050000002" -debug -verbose
Ausgabe:
GlobalPlatformPro v20.01.23-0-g5ad373b Running on Linux 5.15.0-48-generic amd64, Java 17.0.4 by Private Build # Detected readers from JNA2PCSC [*] REINER SCT cyberJack RFID basis 00 00 SCardConnect("REINER SCT cyberJack RFID basis 00 00", T=*) -> T=1, 3B80800101 SCardBeginTransaction("REINER SCT cyberJack RFID basis 00 00") Reader: REINER SCT cyberJack RFID basis 00 00 ATR: 3B80800101 More information about your card: http://smartcard-atr.appspot.com/parse?ATR=3B80800101 A>> T=1 (4+0006) 00A40400 06 F000A0000E00 00 A<< (0000+2) (28ms) 9000 A>> T=1 (4+0000) B0500000 02 A<< (0002+2) (15ms) 0005 9000 A>> T=1 (4+0000) 00A40400 00 A<< (0018+2) (23ms) 6F108408A000000151000000A5049F6501FF 9000 [TRACE] GPSession - [6F] [TRACE] GPSession - [84] A000000151000000 [TRACE] GPSession - [A5] [TRACE] GPSession - [9F65] FF [DEBUG] GPSession - Auto-detected ISD: A000000151000000 SCardEndTransaction("REINER SCT cyberJack RFID basis 00 00") SCardDisconnect("REINER SCT cyberJack RFID basis 00 00", true) tx:22/rx:26
Das Guthaben wird hier mit 0x0005
vor dem Returncode 0x9000
(Erfolgreich) zurückgegeben.
Erstellen eines Hello World Applet
Das Erstellen eines Builds erfolgt mit Ant für JavaCards[5], dessen .jar im Projektverzeichnis platziert wird. Außerdem wird eine SDK benötigt. Hier wird die SDK Version 3.0.4 (hier[6]) und die Java Version 8 verwendet.
Projektdateien
Die build.xml
für den Ant-Task sieht dann wiefolgt aus:
<project name="JavaCardHelloWorld" basedir=".">
<taskdef name="javacard" classname="pro.javacard.ant.JavaCard" classpath="ant-javacard.jar"/>
<javacard>
<cap jckit="./sdks/jc304_kit" aid="0102030405" package="main" output="SimpleHello.cap" sources="src/main/">
<applet class="main.SimpleHello" aid="0102030405060708"/>
</cap>
</javacard>
</project>
Und das HelloWorld SimpleHello.java
:
package main;
import javacard.framework.*;
public class SimpleHello extends Applet {
final static byte HELLO_CLA = (byte)0xB0;
private final byte INS_HELLO = (byte)0x01;
private static final byte[] helloWorld =
{ 'H', 'E', 'L', 'L', 'O', ' ', 'W', 'O', 'R', 'L', 'D' };
private SimpleHello() {
register();
}
public static void install(byte bArray[], short bOffset, byte bLength) throws ISOException {
new SimpleHello();
}
@Override
public void process(APDU apdu) throws ISOException {
byte[] buffer = apdu.getBuffer();
// Return control to the JCRE if SELECT APDU
if ((buffer[ISO7816.OFFSET_CLA] == 0) && (buffer[ISO7816.OFFSET_INS] == (byte)0xa4)) {
return;
}
// Check for correct applet CLA
if (buffer[ISO7816.OFFSET_CLA] != HELLO_CLA) {
ISOException.throwIt(ISO7816.SW_CLA_NOT_SUPPORTED);
}
// Call function corresponding to instruction
switch (buffer[ISO7816.OFFSET_INS]) {
case INS_HELLO:
sendHelloWorld(apdu);
break;
default:
ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);
}
}
private void sendHelloWorld(APDU apdu) {
byte[] buffer = apdu.getBuffer();
short length = (short) helloWorld.length;
Util.arrayCopyNonAtomic(helloWorld, (short) 0, buffer, (short) 0, length);
// Check if Le was provided correctly
short outgoing_length = apdu.setOutgoing();
if (length > outgoing_length) {
ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
}
// Send
apdu.setOutgoingLength(length);
apdu.sendBytes ((short)0 , length);
// Note that for a short response as in the case illustrated here
// the three APDU method calls shown : setOutgoing(),setOutgoingLength() & sendBytes()
// could be replaced by one APDU method call : setOutgoingAndSend().
// apdu.setOutgoingAndSend((short) 0, length);
}
}
Das Projektverzeichnis:
. |------ src/ | |------ main/ | |------ SimpleHello.java |------ sdks/ | |------ jc304_kit/ |------ ant-javacard.jar |------ gp.jar |------ build.xml |------ SimpleHello.cap
Auf die Karte bringen
Schließlich wird für den Build die Java-Homevariable auf Version 8 gesetzt:
export JAVA_HOME="/usr/lib/jvm/java-8-openjdk-amd64/"
...Der Ant-Build ausgeführt:
ant
...Und das Applet installiert:
java -jar gp.jar -install SimpleHello.cap -default
Der Aufruf mit java -jar gp.jar -d -applet 0102030405060708 --apdu B00100000B
liefert nun die Buchstaben "HELLO WORLD" als Hexcode 0x48454C4C4F20574F524C44
zurück.
Key Unwrapping
Im folgenden wird das tls-crypt-v2 [7] Verfahren besprochen, welches von OpenVPN Servern genutzt werden kann, um eine verschlüsselte TLS-Verbindung mit Klienten zu ermöglichen. Bei der älteren Version tls-crypt(-v1), bei dem sowohl der Server als auch die Klienten einen vorher geteilten Schlüssel nutzen, gab es das Risiko, dass nach Komprimitierung eines einzelnen Schlüssels, die gesamte Sicherheit verloren ist. tls-crypt-v2 unterscheidet sich dadurch, dass jeder Klient einen eigenen Schlüssel bekommt.
Jeder klientspezifische Schlüssel wird zusätzlich mit den Schlüssen des Servers "gewrappt", d.h. er wird verschlüsselt und ein HMAC gebildet. Dieser gewrappte Key wird in der operativen Phase, also beim Verbindungsaufbau, an den Server geschickt. Bei erfolgreicher Entschlüsselung und Authentifizierung kann die verschlüsselte Kommunikation über den Klientenschlüssel beginnen.
Ablauf
Anfangs wird ein "tls-crypt-v2 server key" mit openvpn --genkey tls-crypt-v2-server
erstellt.
Dieser base64-kodierte Schlüssel enthält zwei 512 Bit lange Schlüssel, wovon der Server jeweils die ersten 256 Bit wie folgt verwendet:
- die ersten 256 Bit des ersten Schlüssels als AES-256-CTR Schlüssel
Ke
zur Verschlüsselung - die ersten 256 Bit des zweiten Schlüssels als HMAC-SHA-256 Schlüssel
Ka
zur Authentifizierung
Diese Schlüssel werden sowohl für das initiale Wrapping als auch Unwrapping genutzt.
Für die Klienten wird, unter Angabe des gerade erstellten Keys des Servers, ein "tls-crypt-v2 client key" generiert. Dies erfolgt mit OpenVPN's
openvpn --genkey tls-crypt-v2-client --tls-crypt-v2 server.key
. Das ebenfalls base64-kodierte Ergebnis setzt sich aus einem 2048-Bit langen Client-Key Kc
, sowie dem eigentlichen gewrappten Key WKc
zusammen. Das Wrapping, welches hierbei vorgenommen wird, erfolgt folgendermaßen:
len = len(WKc)`` (16 bit, network byte order) T = HMAC-SHA256(Ka, len || Kc || metadata)`` IV = 128 most significant bits of T`` WKc = T || AES-256-CTR(Ke, IV, Kc || metadata) || len
Wie man sehen kann, werden die Serverschlüssel Ka
und Ke
zum "Wrappen", also zum Einpacken benutzt. Die Erstellung von Metadaten ist optional, kann aber zur späteren Authentifizierung beitragen.
Während der Nutzung (also beim Verbindungsaufbau) entpackt der Server den gewrappten Key, den er vom Klienten gesendet bekommt. Mit den server-eigenen Schlüsseln Ke
und Ka
entschlüsselt und authentifiziert der Server den Klienten. Er ist zudem nun in Besitz des Schlüssels Kc
, über den im weiteren Verlauf die verschlüsselte Kommunikation erfolgt. Optional werden zuvor die Metadaten überprüft.
Implementierung
Je nach Version der Java Card werden die benötigten Algorithmen AES-256-CTR und HMAC-SHA256 bereits unterstützt. Ist dies nicht der Fall, und werden zumindestens SHA256 und andere AES-Modi unterstützt, können die nachfolgenden Algorithmen genutzt werden.
Da der gewrappte Klientenschlüssel WKc
garantiert größer als 256 Byte ist, müssen zunächst Extended APDUs richtig verarbeitet werden. Zu diesem Zweck ist es notwendig eine Funktion zu implementieren, die alle Daten die an die Java Card gesendet werden, in einen dafür vorgesehenen Buffer schreibt. Vorab muss dafür gesorgt werden, dass ein solcher Buffer existiert. Der nachfolgende Codeausschnitt zeigt eine mögliche Implementierung.
// Buffer der groß genug ist, um alle Daten zu empfangen. (Bereits im Konstruktor initialisieren.)
private byte[] ram_buf = JCSystem.makeTransientByteArray(RAM_BUF_SIZE, JCSystem.CLEAR_ON_DESELECT);
private short handleData(APDU apdu) throws ISOException {
byte[] buffer = apdu.getBuffer(); // Buffer der eingehenden APDU
short offset_cdata = apdu.getOffsetCdata();
short incoming_length = apdu.getIncomingLength(); // Die angekündigte Menge von Daten
short received_length = apdu.setIncomingAndReceive(); // Empfange die ersten Daten und schreibe sie in 'buffer'
short ram_buf_position = 0;
while (received_length > 0) {
// Werfe Fehler, falls mehr Daten ankommen als Platz im Buffer ist.
if ((short) (ram_buf_position + received_length) > RAM_BUF_SIZE)
ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
// Kopiere die Daten von 'buffer' nach 'ram_buf'
Util.arrayCopyNonAtomic(buffer, offset_cdata, ram_buf, ram_buf_position, received_length);
ram_buf_position += received_length;
// Empfange weitere Daten
received_length = apdu.receiveBytes(offset_cdata);
}
// Werfe Fehler, falls sich die Größe der empfangenen Daten von der angekündigten unterscheidet.
received_length = (short) (ram_buf_position + received_length);
if (received_length != incoming_length)
ISOException.throwIt(ISO7816.SW_DATA_INVALID);
return received_length;
}
Weiterhin wird eine Funktion für die Entschlüsselung mit AES-256 im Counter-Modus benötigt. Da dieser auf einigen Karten nicht nativ unterstützt wird, hier eine eigene Implementierung.
// Buffer für den Initialisierungsvektor (Counter)
private byte[] iv = JCSystem.makeTransientByteArray(AES_BLOCK_SIZE, JCSystem.CLEAR_ON_DESELECT);
// Buffer um Zwischenergebnisse zu speichern.
private byte[] working_buf = JCSystem.makeTransientByteArray(AES_BLOCK_SIZE, JCSystem.CLEAR_ON_DESELECT);
// AES-Algorithmus initialisieren
private Cipher aesCipher = Cipher.getInstance(Cipher.ALG_AES_BLOCK_128_ECB_NOPAD, false);
/* Entschlüsselung mit dem AES-256-CTR Algorithmus */
private void AES_256_CTR(byte[] input, short input_offset, byte[] output, short output_offset, short incoming_length) {
aesCipher.init(Ke, Cipher.MODE_ENCRYPT);
short offset = 0;
// Durchlaufe jedes Byte
for (short i = 0; i < incoming_length; i++) {
// Falls ein neuer Block erreicht wird, wird dieser verschlüsselt und 'iv' inkrementiert.
if (offset == 0) {
aesCipher.doFinal(iv, (short)0, AES_BLOCK_SIZE, working_buf_32, (short)0);
increment_iv();
}
// Einfache XOR-Operation
output[(short)(i + output_offset)] = (byte)(input[(short)(i + input_offset)] ^ working_buf[offset]);
// Aktuellen Block-Offset berechnen
offset = (short)((short)(offset + 1) % AES_BLOCK_SIZE);
}
}
/* Diese Funktion inkrementiert den Initialisierungsvektor. */
private void increment_iv() {
short i;
byte end = 0, dummy = 0;
for (i = (short) iv.length; i > 0; i--) {
if (end == 0) {
if((++iv[(short)(i - 1)] != 0)) {
end = 1;
}
} else {
dummy++;
}
}
}
Weiterhin wird eine Möglichkeit gebraucht, einen HMAC-SHA256 zu generieren. Sofern SHA256 von der Java Card unterstützt wird, kann folgende Funktion verwendet werden.
// Buffer, der zum speichern von Zwischenergebnissen genutzt wird. Dieser muss groß genug sein
private byte[] hmac_buffer = JCSystem.makeTransientByteArray(HMAC_BUFFER_SIZE, JCSystem.CLEAR_ON_DESELECT);
// SHA256
private MessageDigest sha_256 = MessageDigest.getInstance(MessageDigest.ALG_SHA_256, false);
/* Erstellt eine HMAC-SHA256 Prüfsumme. */
private void HMAC_SHA_256(byte[] msg, short msg_offset, short msg_length, byte[] mac, short mac_offset) {
// Inner Hash, wobei Ka der HMAC-Schlüssel ist.
for (short i = 0; i < HMAC_BLOCK_SIZE; i++) hmac_buffer[i] = (byte)((byte)0x36 ^ Ka[i]);
Util.arrayCopyNonAtomic(msg, msg_offset, hmac_buffer, HMAC_BLOCK_SIZE, msg_length);
sha_256.reset();
sha_256.doFinal(hmac_buffer, (short)0, (short)(HMAC_BLOCK_SIZE + msg_length), hmac_buffer, HMAC_BLOCK_SIZE);
// Outer Hash, wobei Ka der HMAC-Schlüssel ist.
for (short i = 0; i < HMAC_BLOCK_SIZE; i++) hmac_buffer[i] = (byte)((byte)0x5C ^ Ka[i]);
sha_256.reset();
sha_256.doFinal(hmac_buffer, (short)0, (short)(HMAC_BLOCK_SIZE + HMAC_HASH_SIZE), mac, mac_offset);
}
Mit diesen Funktionen kann nun das Unwrapping vonstattengehen.