Secret Handshakes: Difference between revisions

From
Jump to navigation Jump to search
Line 5: Line 5:


=== Gruppen ===
=== Gruppen ===
Eine Gruppe G(M, *) besteht aus einer Menge M und einer Verknüpfung *. Weiterhin ist in der Menge M das neutrale Element der Gruppe G enthalten. Ein Gruppe besitzt ein inverses Element. Abschließend ist die Verknüpfung einer gruppe assoziativ.
Eine Gruppe G(M, *) besteht aus einer Menge M und einer Verknüpfung *. Weiterhin ist in der Menge M das neutrale Element der Gruppe G enthalten. Ein Gruppe besitzt ein inverses Element. Abschließend ist die Verknüpfung einer Gruppe assoziativ.


=== zyklische Gruppen ===
=== zyklische Gruppen ===

Revision as of 15:17, 28 June 2007

[TODO] Einleitung

Mathemathische Grundlagen

Um die nachfolgenden Funktionsweise eines Secret Handshakes besser zu verstehen, gehen wir zunächst kurz auf die verwendeten mathematischen Konstrukte ein.

Gruppen

Eine Gruppe G(M, *) besteht aus einer Menge M und einer Verknüpfung *. Weiterhin ist in der Menge M das neutrale Element der Gruppe G enthalten. Ein Gruppe besitzt ein inverses Element. Abschließend ist die Verknüpfung einer Gruppe assoziativ.

zyklische Gruppen

bilineare Abbildungen

speziell benötigte lineare Abbildung

Hashfunktionen

Allgemeines Prinzip

[TODO]

Pairing Based Handshake Schema

[TODO]

Ablauf im Detail

[TODO]

Sicherheit gegen Abhören

[TODO]

Zusätzliche Eigenschaften

[TODO]

Anpassung des TLS Handshakes

[TODO]

Beweisskizze für die formale Sicherheit

[TODO]

Quellen

  • Secret Handshakes from Pairing-Based Key Agreements (2003) Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana Smetters, Jessica Staddon, Hao-Chi Wong. [1]