TCP Performance in Wireless multi-hop Networks: Difference between revisions
Jump to navigation
Jump to search
Line 183: | Line 183: | ||
<li>This gets even more complicated, when the intermediate nodes are allowed to respond to route requests with their own stale routes in cache (amplified by overhearing propagated stale routes and spreading the wrong information around) |
<li>This gets even more complicated, when the intermediate nodes are allowed to respond to route requests with their own stale routes in cache (amplified by overhearing propagated stale routes and spreading the wrong information around) |
||
</td></tr> |
|||
</table> |
|||
<font size=+1><i>Solutions:</i></font> |
|||
<table><tr><td> </td> |
|||
<td> |
|||
<li>Using more effective cache maintenance strategies |
|||
<li>Including simple techniques like dynamically adjusting the route cache timeout mechanism (depending on the observed route failure rate) |
|||
<li>The use of negative route information |
|||
<li>The use of signal strength information |
|||
</td></tr> |
</td></tr> |
||
</table> |
</table> |
Revision as of 08:58, 3 February 2005
Introduction
|
Simulation Environment and Methodology
|
Performance Metric
- First simulated a static (fixed) network of n nodes that formed a linear chain containing n-1 wireless hops - Nodes used 802.11 protocol for medium access - Then a one-way TCP data transfer was performed between the two nodes at the ends of the linear chain, and the TCP throughput was measured between these nodes |
Hops | Throughput (Kbps) |
Table 1 shows measured TCP throughput as a function of number of hops, averaged over ten runs Throughput decreases rapidly when number of hops is increased from 1, then stabilizes once the number of hops becomes large |
1 | 1463.0 | |
2 | 729.0 | |
3 | 484.4 | |
4 | 339.9 | |
5 | 246.4 | |
6 | 205.2 | |
7 | 198.1 | |
8 | 191.8 | |
9 | 185.3 | |
10 | 182.4 |
|
expected throughput =
Measurement of TCP-Reno Throughput
|
Mobility Induced Behaviours
|
Event | Time (secs) | Node | SeqNo | Pkt | Reason of dropping |
s | 0.000 | 1 | 1 | tcp | |
D | 0.191 | 5 | 1 | tcp | NRTE |
s | 6.000 | 1 | 1 | tcp | |
r | 6.045 | 2 | 1 | tcp | |
s | 6.145 | 2 | 1 | ack | |
D | 6.216 | 21 | 1 | ack | NRTE |
s | 18.000 | 1 | 1 | tcp | |
s | 42.000 | 1 | 1 | tcp | |
s | 90.000 | 1 | 1 | tcp | |
D | 120.000 | 15 | 1 | tcp | END |
D | 120.000 | 16 | 1 | tcp | END |
D | 120.000 | 25 | 1 | tcp | END |
s – send, r – receive, D – dropped, NRTE – no route found
First conclusion:
|
Solutions:
|