Brn.Phy: Difference between revisions
No edit summary |
|||
Line 25: | Line 25: | ||
== BER based Receiver == |
== BER based Receiver == |
||
The BER receiver model calculates Bit and Packet Error Rates, which are used as probability whether a frame is received without error. Frame reception becomes a stochastic process depending on the used modulation and coding scheme (i.e. bit rate), the SNR (distance) and number of bits. |
|||
[[Image:dist-per-simplepathloss-3.5-ber.png]] |
|||
Both figures show the number of received and sensed frames for the BER receiver in the same scenario described in the previous section. Note that the thresholds of the SNR receiver caused sharp fall-offs: At a certain point the PER for a given bit rate changed abruptly from 0 to 1. Using the BER receiver we now have soft transition. Note further that the sensing range is larger compared to the SNR receiver, because the model still uses thresholds for preamble detection. This may not be very realistic and will likely be changed in future versions. |
|||
[[Image:dist-sens-simplepathloss-3.5-ber.png]] |
|||
= References = |
|||
* Goldsmith Wireless Communication |
|||
* Paper yans physical layer |
Revision as of 14:45, 30 January 2008
Details about the physical layers in Brn.Sim. Tbd.
Path Loss
Log-Distance based Path Loss
Pathloss using the log-distance based model (see Goldsmith Wireless Communication p. 40) and path loss exponent 3.5 (1sec == 1m).
Shadowing
Fading
Receiver Models
SNR based Receiver
The SNR model defines two thresholds: a sensing and a receiving threashold. If the SNR of the incoming packet is above the receiving (sensing) threshold, the packet is received (sensed). The thresholds are generally different for different bit rates and they are also hardware dependent.
In this example a node transmits 2000 frames per second, using all available IEEE 802.11g bit rates. A second node is placed near the sender and moves away with 1 m/s. We are again using the log-distance pathloss model with exponent 3.5. While the receiver moves away the SNR of received packets also decrease. Eventually it drops below the threshold for the used bit rate and the frame is not received. Instead the receiver only senses the frame. While moving further away the received SNR eventually drops below the sensing threshold (see next figure). Note that there is only one sensing threshold per receiver, but our IEEE 802.11g transmitter uses different power levels for different bit rates.
BER based Receiver
The BER receiver model calculates Bit and Packet Error Rates, which are used as probability whether a frame is received without error. Frame reception becomes a stochastic process depending on the used modulation and coding scheme (i.e. bit rate), the SNR (distance) and number of bits.
Both figures show the number of received and sensed frames for the BER receiver in the same scenario described in the previous section. Note that the thresholds of the SNR receiver caused sharp fall-offs: At a certain point the PER for a given bit rate changed abruptly from 0 to 1. Using the BER receiver we now have soft transition. Note further that the sensing range is larger compared to the SNR receiver, because the model still uses thresholds for preamble detection. This may not be very realistic and will likely be changed in future versions.
References
- Goldsmith Wireless Communication
- Paper yans physical layer