
Safe and fast SSL/TLS-handshake

GS, FO

2024-10-11



Contents

Motivation

History

Structure of TLS

Performance considerations

how to: fast and safe TLS handshake

Caveats



3/13

Motivation

▶ unsecured channels subject to data exposure to third parties
▶ securing of data channel needed → SSL/TLS
▶ method of attributing identities to identity holders needed
▶ method of signaling cessation of identity usage needed
▶ x509/CRL (RFC 5280) and OCSP (RFC 6960) for identity

handling/verification
▶ different methods of establishing secure channel



4/13

History

▶ 1994 SSL 1.0 concept
▶ 1995 SSL 2.0 first release (RFC 6101), MD5-hashing, one key for auth/enc,

depr. 2011 (RFC 6176)
▶ 1996 SSL 3.0 (RFC 6101) subject to POODLE-attack (CVE-2014-35661),

depr. 2014 (RFC 7568)
▶ 1999 TLS 1.0 (RFC 2246), depr. 2021 (RFC 8996)
▶ 2006 TLS 1.1 (RFC 4346), protection against CBC-atacks, depr. 2022
▶ 2008 TLS 1.2 (RFC 5246), replaced MD5/SHA-1, algo selection mechanism
▶ 2018 TLS 1.3 (RFC 8446), defaults to AES256_GCM_SHA384, insecure

algos removed, changed handshake/connection init
⇒ currently two productive versions

1https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html

https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html


5/13

Structure of TLS

TLSv1.2 handshake



6/13

Structure of TLS

TLSv1.3 handshake



7/13

TLSv1.3

▶ only AES and ChaCha20 as cipher
−→ in total 5 options

▶ only Diffie-Hellman (incl./excl. elliptic curves)
▶ no (downgrade)renegotiation anymore



8/13

Performance considerations
different ciphers

▶ software based, ChaCha20 is up to 9x faster

type 2 bytes 31 bytes 136 bytes 1024 bytes 8192 bytes 16384 bytes
AES-256-GCM (Software) 3912.58k 43681.83k 119433.57k 220805.46k 240091.14k 241401.86k
ChaCha20-Poly1305 (Software) 5406.06k 79034.59k 256344.41k 1439373.99k 2491817.98k 2634612.74k



9/13

Performance considerations
hardware acceleration

▶ AES with CPU-support performs best
▶ also faster than ChaCha20
▶ not available on all CPU/with all compilers/with all software

type 2 bytes 31 bytes 136 bytes 1024 bytes 8192 bytes 16384 bytes
AES-256-GCM (Software) 3912.58k 43681.83k 119433.57k 220805.46k 240091.14k 241401.86k
AES-256-GCM (CPU-instructions) 12352.14k 156771.30k 600536.56k 2364060.33k 3829205.67k 4008596.82k
ChaCha20-Poly1305 (Software) 5406.06k 79034.59k 256344.41k 1439373.99k 2491817.98k 2634612.74k



10/13

Performance considerations
SSL offloading

▶ three options
1. software based (user level)
2. kTLS (kernel level)
3. NIC-offload (fully managed by hardware)

▶ should improve throughput due to less context switches
! may introduce operational problems

? possible issues with TCP-checksum on IPv6
- size limits
- issues with network-mounted resources

▶ impact questionable



11/13

Performance

Intel Xeon Gold 6150, 500 parallel connections Raspberry Pi 4, 500 parallel connections



12/13

how to: fast and safe TLS handshake

▶ disable old ciphers
∼ OCSP

! Let’s Encrypt removes OCSP soon

∼ OCSP-Stapling
! Chrome ignores CRL or OCSP, only knows of revoked certificate if stapled result

▶ use elliptic curve for keys
▶ use LARGE packages
▶ SSL offloading (e.g. Nvidia ConnectX-7 for 400G connections)



13/13

Caveats


	Motivation
	History
	Structure of TLS
	Performance considerations
	how to: fast and safe TLS handshake
	Caveats

