
Programming the Click Modular Router

Eddie Kohler

i

Table of Contents

. 1

1 Overview . 2
1.1 Packet Transfer . 2

2 Helper Classes . 3
2.1 String . 3

2.1.1 Class Initialization . 3
2.1.2 Constructors . 3
2.1.3 Contents . 4
2.1.4 Characters and Indices . 5
2.1.5 Derived Strings . 6
2.1.6 Appending to Strings . 6
2.1.7 Comparison . 7
2.1.8 Out-of-Memory Conditions . 8

2.2 StringAccum . 8
2.2.1 Constructors . 8
2.2.2 Appending with operator<< . 8
2.2.3 Appending Data Types . 9
2.2.4 Manipulation . 10
2.2.5 Contents . 11
2.2.6 Results . 12
2.2.7 Out-of-Memory Conditions . 12

2.3 Vector . 13
2.4 Bitvector . 13
2.5 HashMap . 13
2.6 BigHashMap . 13
2.7 ErrorHandler . 13

2.7.1 Class Initialization . 13
2.7.2 Reporting Errors . 13
2.7.3 Format Strings . 15
2.7.4 Counting Errors . 16
2.7.5 Basic ErrorHandlers . 17
2.7.6 Error Veneers . 18
2.7.7 Writing ErrorHandlers . 19

2.8 IPAddress . 20
2.8.1 Constructors . 20
2.8.2 Data. 21
2.8.3 Operations . 22
2.8.4 Unparsing . 23

2.9 IP6Address . 23

ii

3 Packets . 24
3.1 Structure and Contents . 24
3.2 Creation and Destruction . 25

3.2.1 Packet::make . 25
3.2.2 Packet::kill . 26

3.3 Packets and sk_buffs . 26
3.4 Sharing—clone and uniqueify . 27
3.5 Buffer Manipulation—push, pull, put, and take 28
3.6 Annotations . 29

3.6.1 Header Annotations . 29
3.6.1.1 Typed Header Annotations 31

3.6.2 User Annotations . 31
3.6.3 Specific User Annotations . 32
3.6.4 Other Annotations . 33

3.6.4.1 Destination Address 33
3.6.4.2 Timestamp . 34
3.6.4.3 Device . 34
3.6.4.4 Packet Type . 35
3.6.4.5 Performance Counter 35

3.6.5 Annotations In General . 36
3.7 Out-of-Memory Conditions . 36

4 Element Characteristics 37
4.1 Element Class. 37
4.2 Casting . 37
4.3 Names . 38
4.4 Router Relationship . 39
4.5 Creating Ports . 39
4.6 Using Ports . 40
4.7 When Element Methods May Be Called 41

5 Element Initialization . 42
5.1 notify_ninputs and notify_noutputs 42
5.2 configure_phase—Initialization Order 43
5.3 configure—Parsing Configure Strings 44
5.4 processing—Push and Pull Processing 44
5.5 flow_code—Packet Flow Within an Element 45

5.5.1 What Is a Flow Code? . 47
5.6 add_handlers—Creating Handlers . 47
5.7 initialize—Element Initialization . 48
5.8 cleanup—Cleaning Up State . 48
5.9 static_initialize and static_cleanup 49
5.10 Initialization Phases . 50

iii

6 Element Runtime . 51
6.1 Moving Packets . 51

6.1.1 push . 51
6.1.2 pull . 51
6.1.3 Transferring Packets . 51
6.1.4 simple_action . 51

6.2 Handling Packets . 51
6.3 Running Tasks . 52
6.4 Handlers . 52

6.4.1 Read and Write Handler Overview 52
6.4.2 Adding Handlers . 53
6.4.3 Default Read and Write Handlers 54
6.4.4 Accessing Handlers Internally 55

6.4.4.1 The Router::Handler Type 55
6.4.4.2 Handlers By Name or Index 57

6.4.5 LLRPC Overview . 57
6.5 Live Reconfiguration . 58

6.5.1 can live reconfigure . 58

7 Configuration Strings . 59
7.1 Structure . 59
7.2 Quoting and Unquoting . 60
7.3 Splitting and Combining . 61
7.4 Parsing Functions . 62

7.4.1 Strings and Words . 62
7.4.2 Booleans . 64
7.4.3 Integers . 64
7.4.4 Real Numbers . 65
7.4.5 IP Addresses . 67
7.4.6 IPv6 Addresses . 68
7.4.7 Ethernet Addresses . 69
7.4.8 Elements . 69
7.4.9 Handlers . 70
7.4.10 Miscellaneous . 71

7.5 Parsing Argument Lists . 71
7.5.1 Concepts . 71
7.5.2 Global Initialization . 72

8 Tasks . 74
8.1 Task Initialization . 74
8.2 Scheduling Tasks . 75
8.3 Tickets . 76
8.4 Choosing a Thread . 77
8.5 Task Status Methods . 77
8.6 Task Handlers . 78
8.7 Task Cleanup . 78

iv

9 Timers . 80
9.1 Timer Initialization. 80
9.2 Scheduling Timers . 80
9.3 Timer Status Methods . 81
9.4 Timer Cleanup . 82

10 Notification . 83

11 Coding Standards . 84
11.1 Upper and Lower Case in Names . 84
11.2 Common Name Patterns . 84

Index . 85

1

Chapter 1: Overview 2

1 Overview

1.1 Packet Transfer

Chapter 2: Helper Classes 3

2 Helper Classes

2.1 String

The String class represents a string of characters. Strings may be constructed from
C strings, characters, numbers, and so forth. They may also be added together. The
underlying character arrays are dynamically allocated; operations on Strings allocate and
free memory as needed. A String and its substrings will generally share memory. Strings
may be assigned, stored, and passed to functions.

2.1.1 Class Initialization

The String class maintains some global state that must be explicitly initialized with the
static_initialize static method. You can explicitly clean up this state with static_

cleanup, if you’d like. String also provides a helper class, String::Initializer, that
initializes String’s global state in its constructor.

Static Method on Stringvoid static initialize ()
Call this function exactly once, at the beginning of the program, before any Strings
are created or other String functions called.

Static Method on Stringvoid static cleanup ()
Call this function exactly once, just before the program exits, to clean up String-
related memory. It is an error to call any String method, except for String destruc-
tors, after calling static_cleanup.

ClassString::Initializer
Declare a String::Initializer object in any source file that contains a global string
object. The constructor for the String::Initializer will call String::static_
initialize if necessary. For example, this source file is in error, since it declares a
global string without a corresponding Initializer:

#include <click/string.hh>
String foo = "bar";
int main(int, char **) { /* ... */ }

To fix it, declare a String::Initializer before the global string.

#include <click/string.hh>
String::Initializer string_initializer;
String foo = "bar";
int main(int, char **) { /* ... */ }

2.1.2 Constructors

Constructor on StringString ()
Creates a string with no characters.

Chapter 2: Helper Classes 4

Constructor on StringString (const char *s)
Creates a string containing a copy of the C string s.

Constructor on StringString (const char *s, int len)
Creates a string containing the first len characters of s. If len is negative, then this
function treats s as a C string, effectively setting len to strlen(s).

Constructor on StringString (char c)
Constructor on StringString (unsigned char c)

Creates a string containing the single character c.

Constructor on StringString (int n)
Constructor on StringString (unsigned n)
Constructor on StringString (long n)
Constructor on StringString (unsigned long n)
Constructor on StringString (long long n)
Constructor on StringString (unsigned long long n)
Constructor on StringString (double n)

Creates a string containing an ASCII decimal representation of the number n. For
example, if n is 20, then String(n) equals "20". The double constructor is not
available in the kernel.

Static Method on Stringconst String & null string ()
Returns a const reference to a string with no characters. Useful in situations where you
wish to avoid unnecessary memory operations by returning string references instead
of Strings.

Static Method on StringString stable string (const char *s, int len)
Creates and returns a string containing the len bytes of data starting at s. If len is
negative, then this function treats s as a C string, effectively setting len to strlen(s).
The caller guarantees that s is located in stable, read-only memory and will not be
changed while any String references to it still exist. For example, s might be a C
string constant. The String implementation will not alter or free s. Functions such
as mutable_data (see below) will return copies of s, not s itself.

Static Method on StringString garbage string (int len)
Creates and returns a string containing len bytes of garbage data.

2.1.3 Contents

Caution: Any pointer to a string’s data should be treated as temporary, since
once the string is destroyed, that memory will be freed. Remember, however,
that a temporary String object will not be destroyed until the end of the
statement in which it was created. Therefore, this use of cc() is safe:

String a, b; // ...
fprintf(stderr, "%s\n", (a + b).cc());

This use is not safe:

Chapter 2: Helper Classes 5

String a, b; // ...
const char *s = (a + b).cc();
fprintf(stderr, "%s\n", s); // probably an error

Method on Stringconst char * data () const

Returns a pointer to the string’s data. This data is not guaranteed to be null-
terminated. Only the first length() of its characters are valid.

Method on Stringint length () const

Returns the string’s length in characters.

Method on Stringoperator bool ()
Method on Stringoperator bool () const

Returns true iff the string has at least one character.

Method on Stringchar * mutable data ()
Returns a mutable pointer to the string’s data. If the data is shared with any other
String object, or was allocated by stable_string (see above), then this method will
transparently modify the String to use a unique copy of the data, and return that.

Method on Stringconst char * cc ()
Method on Stringconst char * c str ()
Method on Stringoperator const char * ()

Returns a pointer to the string’s data as a C string. This may transparently modify
the String by adding a null character after the string’s data, which may involve
making a copy of the data. This null character will not be counted as part of the
string’s length.

Method on Stringchar * mutable c str ()
Returns a mutable pointer to the string’s data as a C string.

2.1.4 Characters and Indices

Method on Stringchar operator[] (int i) const

Returns the ith character of the string. i should be between 0 and length()− 1.

Method on Stringchar back () const

Returns the last character of the string. The string must not be empty.

Method on Stringint find left (int c, int start = 0) const

Returns the position of the first occurrence of the character c in the string on or after
position start. If c does not occur on or after position start, returns −1.

Method on Stringint find right (int c) const
Method on Stringint find right (int c, int start) const

Returns the position of the last occurrence of the character c in the string before
position start. If start is not supplied, returns the absolute last occurrence of c in the
string. If c does not occur before position start, returns −1.

Chapter 2: Helper Classes 6

Method on Stringint find left (const String &s, int start = 0) const
Returns the position of the first occurrence of the substring s in the string on or after
position start. If s does not occur on or after position start, returns −1.

2.1.5 Derived Strings

Method on StringString substring (int pos, int len) const

Returns a new string containing characters pos through pos+len− 1 of this string.

If pos is negative, then start −pos characters from the end of the string. If len is
negative, then drop −len characters from the end of the string. len may be too large;
only characters actually in the string will be returned. If pos is too large or too small,
the result is a null string.

These examples demonstrate the use of substring :

String("abcde").substring(2, 2) == "cd"
String("abcde").substring(-3, 2) == "cd"
String("abcde").substring(-3, -1) == "cd"
String("abcde").substring(2, 10) == "cde"
String("abcde").substring(10, 4) == ""
String("abcde").substring(-10, 4) == ""

Method on StringString substring (int pos) const
Same as substring(pos, length() - pos): return a new string containing all of this
string’s characters starting at pos.

Method on StringString lower () const

Return a string equal to this string, but with all alphabetic characters translated to
lower case.

Method on StringString upper () const

Return a string equal to this string, but with all alphabetic characters translated to
upper case.

Method on StringString printable () const

Return a string equal to this string, but with all non-printable characters replaced by
quote sequences. For example, null characters ‘〈NUL〉’ become ‘^@’ sequences.

2.1.6 Appending to Strings

If you are gradually building up a string by successive appends, you should probably use
StringAccum instead of these String operations (see Section 2.2 [StringAccum], page 8).

Method on Stringvoid append (const char *s, int len)
Appends the first len characters of s to the end of this string. If len is negative, then
this function treats s as a C string, effectively setting len to strlen(s).

Chapter 2: Helper Classes 7

Method on Stringvoid append fill (int c, int len)
Adds len copies of the character c to the end of this string.

Method on Stringvoid append garbage (int len)
Adds len arbitrary characters to the end of this string.

Method on StringString & operator+= (const String &s)
Method on StringString & operator+= (const char *s)
Method on StringString & operator+= (char c)

Appends the string s or character c to this string.

FunctionString operator+ (String s1, const String &s2)
FunctionString operator+ (String s1, const char *s2)
FunctionString operator+ (const char *s1, const String &s2)
FunctionString operator+ (String s1, char c)

Appends the string s2 or character c to the string s1, and returns the resulting string.

2.1.7 Comparison

Method on Stringbool equals (const char *s, int len) const

Compares this string to the first len characters of s. If len is negative, then this
function treats s as a C string, effectively setting len to strlen(s). Returns true iff
the two strings have the same length and contain the same characters in the same
order.

Functionbool operator== (const String &s1, const String &s2)
Functionbool operator== (const char *s1, const String &s2)
Functionbool operator== (const String &s1, const char *s2)

Returns true iff the two strings are equal—that is, returns s1.equals(s2.data(),
s2.length()).

Functionbool operator!= (const String &s1, const String &s2)
Functionbool operator!= (const char *s1, const String &s2)
Functionbool operator!= (const String &s1, const char *s2)

Returns true iff the two strings are not equal—that is, returns !(s1 == s2).

Functionint hashcode (const String &s)
Returns a number with the property that, for any two equal strings s1 and s2,
hashcode(s1) == hashcode(s2). With this function, Strings may be used as keys
for HashMaps and BigHashMaps (see Section 2.5 [HashMap], page 13).

Chapter 2: Helper Classes 8

2.1.8 Out-of-Memory Conditions

String operations are robust against out-of-memory conditions. If there is not enough
memory to create a particular string, the String implementation returns a special “out-of-
memory” string instead. This is a contagious empty string. Any concatenation operation
(operator+ or append) involving an out-of-memory string has an out-of-memory result.
Out-of-memory strings compare unequal to every other string, including themselves.

All out-of-memory strings share the same data, which is different from the data of any
other string.

Method on Stringbool out of memory () const

Returns true iff this string is an out-of-memory string.

Static Method on Stringconst String & out of memory string ()
Returns an out-of-memory string.

2.2 StringAccum

The StringAccum class, like String (see Section 2.1 [String], page 3), represents a string
of characters. StringAccum is optimized for building a string through accumulation, or
successively appending substrings until the whole string is ready. A StringAccum has both
a length—the number of characters it currently contains—and a capacity—the maximum
number of characters it could hold without reallocating memory.

2.2.1 Constructors

Constructor on StringAccumStringAccum ()
Creates a StringAccum with no characters.

Constructor on StringAccumStringAccum (int capacity)
Creates a StringAccum with no characters, but a capacity of capacity. capacity must
be greater than zero.

StringAccum’s copy constructor (StringAccum(const StringAccum &)) and assignment
operator (operator=(const StringAccum &)) are private. Thus, StringAccums cannot be
assigned or passed as arguments. Of course, references to StringAccums may be passed as
arguments, and this usage is quite common.

2.2.2 Appending with operator<<

Generally, you append to a StringAccum using iostreams-like << operators, which this
section describes. The next section describes the low-level interface, the append and pop_

back methods.

Here is a conventional use of StringAccum’s << operators:

struct timeval tv; StringAccum sa; int n; // ...
sa << tv << ": There are " << n << " things.\n";

Chapter 2: Helper Classes 9

FunctionStringAccum & operator<< (StringAccum &sa, char c)
FunctionStringAccum & operator<< (StringAccum &sa, unsigned char c)

Appends the character c to the StringAccum sa and returns sa.

FunctionStringAccum & operator<< (StringAccum &sa, const char *s)
FunctionStringAccum & operator<< (StringAccum &sa, const String &s)
FunctionStringAccum & operator<< (StringAccum &sa,

const StringAccum &sa2)
Appends the string s, or the value of the StringAccum sa2, to sa and returns sa.

FunctionStringAccum & operator<< (StringAccum &sa, short n)
FunctionStringAccum & operator<< (StringAccum &sa, unsigned short n)
FunctionStringAccum & operator<< (StringAccum &sa, int n)
FunctionStringAccum & operator<< (StringAccum &sa, unsigned n)
FunctionStringAccum & operator<< (StringAccum &sa, long n)
FunctionStringAccum & operator<< (StringAccum &sa, unsigned long n)
FunctionStringAccum & operator<< (StringAccum &sa, long long n)
FunctionStringAccum & operator<< (StringAccum &sa,

unsigned long long n)
FunctionStringAccum & operator<< (StringAccum &sa, double n)

Appends an ASCII decimal representation of the number n to sa and returns sa. For
example, if n is 20, then sa << n has the same effect as sa << "20". The double

operator is not available in the kernel.

2.2.3 Appending Data Types

StringAccum comes with operator<< definitions for the bool, struct timeval,
IPAddress, and EtherAddress types. Of course, you can write your own operator<<

functions for other data types, either using existing operator<<s or the manipulation
functions described in the next section.

FunctionStringAccum & operator<< (StringAccum &sa, bool &val)
Appends the string true or false to sa, according to the value of val.

FunctionStringAccum & operator<< (StringAccum &sa,
const struct timeval &tv)

Appends an ASCII decimal representation of the time value tv to sa and returns sa.
The time value is printed as if by printf("%ld.%06ld", tv.tv_sec, tv.tv_usec).

FunctionStringAccum & operator<< (StringAccum &sa, IPAddress &addr)
Appends the conventional dotted-quad representation of the IP address addr to sa
and returns sa. For example, ‘sa << addr’ might have the same effect as ‘sa <<

"18.26.4.44"’.

Chapter 2: Helper Classes 10

FunctionStringAccum & operator<< (StringAccum &sa,
const EtherAddress &addr)

Appends the conventional colon-separated hexadecimal representation of the Ethernet
address addr to sa and returns sa. For example, ‘sa << addr’ might have the same
effect as ‘sa << "00:02:B3:06:06:36:EE"’.

2.2.4 Manipulation

This section describes lower-level methods for manipulating StringAccum objects. The
append methods append data to the StringAccum; the extend, reserve, and forward

methods add space to the end of it; and the clear and pop_back methods remove its
characters.

Method on StringAccumvoid append (char c)
Method on StringAccumvoid append (unsigned char c)

Appends the character c to the end of this StringAccum. Equivalent to *this << c.

Method on StringAccumvoid append (const char *s, int len)
Appends the first len characters of s to the end of this StringAccum. If len is negative,
then this function treats s as a C string, effectively setting len to strlen(s).

Method on StringAccumchar * extend (int len)
Puts len arbitrary characters at the end of this StringAccum and returns a pointer
to those characters. The return value may be a null pointer if there is not enough
memory to grow the character array. This method increases the StringAccum’s length
by len, which must be greater than or equal to zero.

Method on StringAccumchar * extend (int len, int extra)
Puts len arbitrary characters at the end of this StringAccum and returns a pointer
to those characters. Also ensures space for extra additional characters following the
len new characters; however, these characters do not contribute to the StringAccum’s
length. The return value may be a null pointer if there is not enough memory to
grow the character array. Increases the StringAccum’s length by len, which must be
greater than or equal to zero.

This form of extend is generally used to compensate for the null character appended
by C string functions like sprintf. For example:

if (char *buf = string_accum.extend(4, 1))
// 4 real characters plus one terminating null
sprintf(buf, "\\%03o", i);

Caution: The pointer returned by extend, or the reserve method described
below, should be treated as transient. It may become invalid after the next
call to a method that grows the StringAccum, such as append, extend, or
one of the operator<< functions, and will definitely become invalid when the
StringAccum is destroyed.

The reserve and forward methods together provide a convenient, fast interface for
appending strings of unknown, but bounded, length.

Chapter 2: Helper Classes 11

Method on StringAccumchar * reserve (int len)
Reserves space for len characters at the end of this StringAccum and returns a
pointer to those characters. The return value may be a null pointer if there is
not enough memory to grow the character array. This method does not change the
StringAccum’s length, although it may change its capacity. Use forward to change
the StringAccum’s length.

Method on StringAccumvoid forward (int amt)
Adds amt to the StringAccum’s length without changing its data. This method is
used in conjunction with reserve, above. Use reserve to get space suitable for
appending a string of unknown, but bounded, length. After finding the actual length,
use forward to inform the StringAccum. amt must be greater than or equal to zero,
and less than or equal to the remaining capacity.

Finally, these methods remove characters from a StringAccum rather than add characters
to it.

Method on StringAccumvoid clear ()
Erases the StringAccum, making its length zero (an empty string).

Method on StringAccumvoid pop back ()
Method on StringAccumvoid pop back (int amt)

Remove the last character, or the last amt characters, of the string. amt must be
greater than or equal to zero, and less than or equal to the StringAccum’s length.

2.2.5 Contents

Caution: The pointer returned by data and c_str should be treated as tran-
sient. It may become invalid after the next call to a method that grows the
StringAccum, such as append, extend, or one of the operator<< functions,
and will definitely become invalid when the StringAccum is destroyed.

Method on StringAccumconst char * data () const

Method on StringAccumchar * data ()
Returns a pointer to the character data contained in this StringAccum.

Method on StringAccumint length () const

Returns the number of characters in this StringAccum.

Method on Stringoperator bool ()
Method on Stringoperator bool () const

Returns true iff this StringAccum has at least one character.

Method on StringAccumconst char * c str ()
Method on StringAccumconst char * cc ()

Returns a pointer to the character data contained in this StringAccum. Guarantees
that the returned string is null-terminated: the length()th character will be ’\0’.
This does not affect the StringAccum’s contents or length.

Chapter 2: Helper Classes 12

Method on StringAccumchar operator[] (int i) const

Method on StringAccumchar & operator[] (int i)
Returns the ith character of this StringAccum. i must be greater than or equal to
zero, and less than the StringAccum’s length. Note that the non-const version of
this method returns a mutable character reference, which facilitates code like

StringAccum sa; // ...
sa[5] = ’a’;

2.2.6 Results

StringAccum’s take methods return the string accumulated by a series of calls to
operator<< or similar methods. Each take method makes StringAccum relinquish re-
sponsibility for its character array memory, passing that responsibility on to its caller. The
caller should free the memory when it is done—either with delete[], for the take and
take_bytes methods, or by relying on String to handle it, for the take_string method.

Each take method additionally restores the StringAccum to its original, empty state.
Further appends or similar operations will begin building a new string from scratch.

Method on StringAccumvoid take (unsigned char *&s, int &len)
Sets the s variable to this StringAccum’s character data and len to its length. Then
clears the StringAccum’s internal state.

Method on StringAccumchar * take ()
Method on StringAccumunsigned char * take bytes ()

Returns this StringAccum’s character data, then clears the StringAccum’s internal
state. The methods differ only in their return types. Note that StringAccum::length
will always return zero immediately after a take or take_bytes. If you need to know
the string’s length, call length first.

Method on StringAccumString take string ()
Returns this StringAccum’s character data as a String object (see Section 2.1
[String], page 3), then clears the StringAccum’s internal state. This method hands
the character data over to the String implementation; no data copies are performed.

2.2.7 Out-of-Memory Conditions

StringAccum operations are robust against out-of-memory conditions. If there is not
enough memory to complete a particular operation, the StringAccum is erased and turned
into a special out-of-memory indicator. This is a contagious empty string. Every operation
on such a buffer (except for clear) leaves it in the out-of-memory state.

Method on StringAccumbool out of memory () const

Returns true iff this StringAccum is an out-of-memory indicator.

The extend and reserve methods can return null pointers on out-of-memory; their
callers should always check that their return values are non-null.

Chapter 2: Helper Classes 13

2.3 Vector

2.4 Bitvector

2.5 HashMap

2.6 BigHashMap

2.7 ErrorHandler

All Click error messages are passed to an instance of the ErrorHandler class.
ErrorHandler separates the generation of error messages from the particular way those
messages should be printed. It also makes it easy to automatically decorate errors with
context information.

Most Click users must know how to report errors to an ErrorHandler, and how
ErrorHandlers count the messages they receive. This section also describes how to
decorate error messages with error veneers, and how to write new ErrorHandlers.

ErrorHandler and its important subclasses are defined in <click/error.hh>.

2.7.1 Class Initialization

The ErrorHandler class maintains some global state that must be initialized by calling
static_initialize at the beginning of the program, and may be freed by calling static_

cleanup when execution is complete.

Static Method on ErrorHandlervoid static initialize (ErrorHandler
*default errh)

Call this function exactly once, at the beginning of the program, before any error mes-
sages are reported to any ErrorHandler. It is OK to create arbitrary ErrorHandler

objects before calling this method, however. The default errh argument becomes the
default ErrorHandler; see Section 2.7.5 [Basic ErrorHandlers], page 17.

Static Method on ErrorHandlervoid static cleanup ()
Call this function exactly once, just before the program exits. Destroys the default
and silent ErrorHandlers and cleans up other ErrorHandler-related memory. It is
an error to call any ErrorHandler method after calling static_cleanup.

2.7.2 Reporting Errors

ErrorHandler’s basic error reporting methods take a format string, which may use
printf-like ‘%’ escape sequences, and additional arguments as required by the format string.
See Section 2.7.3 [Error Format Strings], page 15, for more details on the format string.
The five methods differ in the seriousness of the error they report.

Chapter 2: Helper Classes 14

Method on ErrorHandlervoid debug (const char *format, ...)
Method on ErrorHandlervoid message (const char *format, ...)
Method on ErrorHandlerint warning (const char *format, ...)
Method on ErrorHandlerint error (const char *format, ...)
Method on ErrorHandlerint fatal (const char *format, ...)

Report the error described by format and any additional arguments. The methods are
listed by increasing seriousness. Use debug for debugging messages that should not be
printed in a production environment; message for explanatory messages that do not
indicate errors; warning for warnings (this function prepends the string ‘warning: ’
to every line of the error message); error for errors; and fatal for errors so serious
that they should halt the execution of the program. The three functions that indicate
errors, warning, error, and fatal, always return -EINVAL. In some environments,
fatal will actually exit the program with exit code 1.

Each of these methods has an analogue that additionally takes a landmark: a string
representing where the error took place. A typical landmark contains a file name and line
number, separated by a colon—‘foo.click:31’, for example.

Method on ErrorHandlervoid ldebug (const String &landmark, const char

*format, ...)
Method on ErrorHandlervoid lmessage (const String &landmark, const char

*format, ...)
Method on ErrorHandlerint lwarning (const String &landmark, const char

*format, ...)
Method on ErrorHandlerint lerror (const String &landmark, const char

*format, ...)
Method on ErrorHandlerint lfatal (const String &landmark, const char

*format, ...)
Report the error described by format and any additional arguments. The error took
place at landmark. Most ErrorHandlers will simply prepend ‘landmark: ’ to each
line of the error message.

These methods are all implemented as wrappers around the verror function. This func-
tion takes a landmark, a format string, a va_list packaging up any additional arguments,
and a seriousness value, which encodes how serious the error was. The Seriousness enu-
merated type, which is defined in the ErrorHandler class, represents seriousness values.
There are five constants, corresponding to the five error-reporting methods:

ERR_DEBUG

Corresponds to debug and ldebug.

ERR_MESSAGE

Corresponds to message and lmessage.

ERR_WARNING

Corresponds to warning and lwarning.

ERR_ERROR

Corresponds to error and lerror.

Chapter 2: Helper Classes 15

ERR_FATAL

Corresponds to fatal and lfatal.

Method on ErrorHandlerint verror (Seriousness seriousness, const String

&landmark, const char *format, va_list val)
Report the error described by format and val. The error took place at landmark, if
landmark is nonempty. The seriousness value is one of the five constants described
above. Always returns -EINVAL.

2.7.3 Format Strings

ErrorHandler’s format strings closely follow C’s standard printf format strings. Most
characters in the format string are printed verbatim. The ‘%’ character introduces a conver-
sion, which prints data read from the remaining arguments. The format string may contain
newlines ‘\n’, but it need not end with a newline; ErrorHandler will add a final newline if
one does not exist.

Each conversion, or formatting escape, follows this pattern:

• First, the ‘%’ character introduces each conversion.

• Next comes zero or more flag characters;

• then an optional field width;

• then an optional precision;

• then an optional length modifier;

• and finally, the mandatory conversion specifier, which is usually a single character, but
may be a name enclosed in braces.

We discuss each of these is turn.

Any conversion may be modified by zero or more of these flag characters.

‘#’ The value should be converted to an “alternate form”. For ‘o’ conversions, the
first character of the output string is made ‘0’, by prepending a ‘0’ if there was
not one already. For ‘x’ and ‘X’ conversions, nonzero values have ‘0x’ or ‘0X’
prepended, respectively.

‘0’ The value should be zero padded. For ‘d’, ‘i’, ‘u’, ‘o’, ‘x’, and ‘X’ conversions,
the converted value is padded on the left with ‘0’ characters rather than spaces.

‘-’ The value should be left-justified within the field width.

‘ ’ (a space)
Leave a blank before a nonnegative number produced by a signed conversion.

‘+’ Print a ‘+’ character before a nonnegative number produced by a signed con-
version.

The optional field width, a decimal digit string, forces the conversion to use a minimum
number of characters. The result of a conversion is padded on the left with space characters
to reach the minimum field width, unless one of the ‘0’ or ‘-’ flags was supplied.

The optional precision is a decimal digit string preceded by a period ‘.’. For ‘d’, ‘i’,
‘u’, ‘o’, ‘x’, and ‘X’ conversions, the precision specifies the minimum number of digits that

Chapter 2: Helper Classes 16

must appear; results with fewer digits are padded on the left with ‘0’ characters. For the ‘s’
conversion, the precision specifies the maximum number of characters that can be printed.
For ‘e’, ‘f’, ‘E’, and ‘F’ conversions, it specifies the number of digits to appear after the
radix character; for ‘g’ and ‘G’ conversions, the number of significant digits.

If either the field width or precision is specified as a star ‘*’, ErrorHandler reads the
next argument as an integer and uses that instead.

Length modifiers affect the argument type read by the conversion. There are three
modifiers:

‘h’ The next argument is a short or unsigned short. Affects the ‘d’, ‘i’, ‘u’, ‘o’,
‘x’, and ‘X’ conversions.

‘l’ The next argument is a long or unsigned long. Affects the ‘d’, ‘i’, ‘u’, ‘o’, ‘x’,
and ‘X’ conversions.

‘ll’ The next argument is a long long or unsigned long long. Affects the ‘d’, ‘i’,
‘u’, ‘o’, ‘x’, and ‘X’ conversions.

Finally, these are the conversions themselves.

‘s’ Print the const char * argument, treated as a C string.

‘c’ The int argument is treated as a character constant. Printable ASCII charac-
ters (values between 32 and 126) are printed verbatim. Characters ‘\n’, ‘\t’,
‘\r’, and ‘\0’ use those C escape representations. Other characters use the
representation ‘\%03o’.

‘d’, ‘i’ The argument is an int; print its decimal representation.

‘u’ The argument is an unsigned int; print its decimal representation.

‘o’ The argument is an unsigned int; print its octal representation.

‘x’, ‘X’ The argument is an unsigned int; print its hexadecimal representation. The
‘%x’ conversion uses lowercase letters; ‘%X’ uses uppercase letters.

‘e’, ‘f’, ‘g’, ‘E’, ‘F’, ‘G’
The argument is a double; print its representation as if by printf (user-level
drivers only).

‘p’ The void * argument is cast to unsigned long and printed as by ‘%#lx’.

‘%’ Print a literal ‘%’ character.

‘{element}’
The argument is an Element *. Print that element’s declaration.

Note that ErrorHandler does not support the ‘n’ conversion.

2.7.4 Counting Errors

ErrorHandler objects count the number of errors and warnings they have received and
make those values available to the user.

Chapter 2: Helper Classes 17

Method on ErrorHandlervirtual int nwarnings () const

Method on ErrorHandlervirtual int nerrors () const

Returns the number of warnings or errors received by this ErrorHandler so far.

Method on ErrorHandlervirtual void reset counts ()
Resets the nwarnings and nerrors counters to zero.

These counters are typically used to determine whether an error has taken place in some
complex piece of code. For example:

int before_nerrors = errh->nerrors();
// . . . complex code that may report errors to errh . . .
if (errh->nerrors() != before_nerrors) {

// an error has taken place
}

2.7.5 Basic ErrorHandlers

Every Click error message eventually reaches some basic ErrorHandler, which generally
prints the messages it receives. The user-level driver’s basic ErrorHandler prints error
messages to standard error, while in the Linux kernel module, the basic ErrorHandler logs
messages to the syslog and stores them for access via ‘/proc/click/errors’.

Two basic ErrorHandlers are always accessible via static methods: the default
ErrorHandler, returned by default_handler and set by set_default_handler; and the
silent ErrorHandler, returned by silent_handler, which ignores any error messages it
receives.

Static Method on ErrorHandlerErrorHandler * default handler ()
Returns the default ErrorHandler.

Static Method on ErrorHandlervoid set default handler
(ErrorHandler *errh)

Sets the default ErrorHandler to errh. The static_initialize method also sets
the default ErrorHandler; see Section 2.7.1 [ErrorHandler Initialization], page 13.

Static Method on ErrorHandlerErrorHandler * silent handler ()
Returns the silent ErrorHandler. This handler ignores any error messages it receives.
It maintains correct nwarnings and nerrors counts, however.

FileErrorHandler, a kind of basic ErrorHandler, is available in any user-level program.
It prints every message it receives to some file, usually standard error. It can also prepend
an optional context string to every line of every error message.

Constructor on FileErrorHandlerFileErrorHandler (FILE *f,
const String &prefix = "")

Constructs a FileErrorHandler that prints error messages to file f. If prefix is
nonempty, then every line of every error message is prepended by prefix.

Chapter 2: Helper Classes 18

2.7.6 Error Veneers

Error veneers wrap around basic ErrorHandler objects and change how error text is
generated. An error veneer generally changes each error message’s text in some way, perhaps
by adding a context message or some indentation. It then passes the altered text to the
basic ErrorHandler for printing. Error veneers can be easily nested.

The first argument to each error veneer constructor is a pointer to another ErrorHandler
object. The veneer will pass altered error text to this handler, the base handler, for further
processing and printing. It also delegates nwarnings() and nerrors() calls to the base
handler.

Click comes with three error veneers: one for adding context, one for prepending text
to every line, and one for supplying missing landmarks. It is easy to write others; see
Section 2.7.7 [Writing ErrorHandlers], page 19, for details.

Constructor on ContextErrorHandlerContextErrorHandler
(ErrorHandler *base errh, const String &context,
const String &indent = " ")

Constructs a ContextErrorHandler with base errh as base.

The first time this handler receives an error message, it will precede the message with
the context string—generally more detailed information about where the error has
occurred. Every line in every received error message is prepended with indent, two
spaces by default, to set off the message from its context.

Constructor on PrefixErrorHandlerPrefixErrorHandler
(ErrorHandler *base errh, const String &prefix)

Constructs a PrefixErrorHandler with base errh as base.

This handler precedes every line of every error message with prefix.

Constructor on LandmarkErrorHandlerLandmarkErrorHandler
(ErrorHandler *base errh, const String &landmark)

Constructs a LandmarkErrorHandler with base errh as base.

This handler supplies landmark in place of any blank landmark passed to it. This
will cause the base handler to include landmark in its error message.

To demonstrate these veneers in practice, we’ll use the following function, which prints
two error messages:

void f(ErrorHandler *errh) {
errh->error("First line\nSecond line");
errh->lwarning("here", "Third line");

}

A simple FileErrorHandler shows the base case.

FileErrorHandler errh1(stderr);
f(&errh1);

a First line

a Second line

a here: warning: Third line

The simplest error veneer, PrefixErrorHandler, just prepends text to every line.

Chapter 2: Helper Classes 19

PrefixErrorHandler errh2(&errh1, "prefix - ");
f(&errh2);

a prefix - First line

a prefix - Second line

a prefix - here: warning: Third line

ContextErrorHandler supplies a line of context before the first error message, and
indents all messages except the context.

ContextErrorHandler errh3(&errh1, "This was called from ...", "** ");
f(&errh3);

a This was called from ...

a ** First line

a ** Second line

a here: ** warning: Third line

Note that the indentation ‘** ’ is printed after the landmark. This often looks better than
the alternative.

Of course, an error veneer can take another error veneer as its “base handler”, leading
to cumulative effects.

ContextErrorHandler errh4(&errh2, "This was called from ...", "** ");
f(&errh4);

a prefix - This was called from ...

a prefix - ** First line

a prefix - ** Second line

a prefix - here: ** warning: Third line

2.7.7 Writing ErrorHandlers

ErrorHandler constructs an error message using three virtual functions. The first,
make_text, parses a format string and argument list into a single String. This is passed to
the second function, decorate_text, which may transform the string. The final function,
handle_text, prints the resulting error message. This structure makes ErrorHandler easy
to extend. To write a new basic ErrorHandler, you will need to override just handle_text
and the counting functions (nwarnings, nerrors, and reset_counts). The ErrorVeneer

helper class, described below, lets you override just decorate_text when writing an error
veneer.

Method on ErrorHandlervirtual String make text (Seriousness s,
const char *format, va_list val)

Parses the format string format with arguments from val, returning the results as a
String object.

The default implementation processes the formatting escapes described above (see
Section 2.7.3 [Error Format Strings], page 15). It also prepends every line of the error
message with ‘warning: ’ if s equals ERR_WARNING.

Chapter 2: Helper Classes 20

Method on ErrorHandlervirtual String decorate text (Seriousness s,
const String &prefix, const String &landmark, const String &text)

Decorates the error message text as appropriate and returns the result. At minimum,
every line of the result should be prepended by prefix and, if it is nonempty, the
landmark string landmark.

The default implementation creates lines like this:

prefixlandmark: text (if landmark is nonempty)
prefixtext (if landmark is empty)

Any spaces and/or a final colon are stripped from the end of landmark. Special
landmarks, which begin and end with a backslash ‘\’, are ignored.

Method on ErrorHandlervirtual void handle text
(Seriousness s, const String &text)

This method is responsible for printing or otherwise informing the user about the
error message text. If s equals ERR_FATAL, the method should exit the program or
perform some other drastic action. It should also maintain the nwarnings() and
nerrors() counters. In most cases, it should ensure that the last character in text is
a newline.

This method has no default implementation.

The ErrorVeneer class, a subclass of ErrorHandler, supplies default implementations
for these functions that ease the construction of new error veneers. ErrorVeneer’s single
instance variable, ErrorHandler *_errh, is the base handler. ErrorVeneer overrides
all the relevant virtual functions—nwarnings, nerrors, reset_counts, make_text,
decorate_text, and handle_text. Its versions simply delegate to the corresponding
methods on _errh. An error veneer designer will generally subclass ErrorVeneer rather
than ErrorHandler; then she will override only the methods she cares about (usually
decorate_text), relying on ErrorVeneer’s default implementations for the rest.

Constructor on ErrorVeneerErrorVeneer (ErrorHandler *base errh)
Constructs an ErrorVeneer helper class with base errh as its base error handler. This
constructor simply sets _errh = base_errh.

2.8 IPAddress

The IPAddress type represents an IPv4 address. It supports bitwise operations like ‘&’
and ‘|’ and provides methods for unparsing IP addresses into ASCII dotted-quad form.

2.8.1 Constructors

IPAddress objects can be constructed from network-order integers, from pointers to
arrays of bytes, from ASCII strings, and from the conventional struct in_addr type.

Method on IPAddressIPAddress ()
Creates an IP address equal to 0.0.0.0.

Chapter 2: Helper Classes 21

Method on IPAddressexplicit IPAddress (const unsigned char *value)
Creates an IP address equal to ‘value[0].value[1].value[2].value[3]’.

Method on IPAddressIPAddress (unsigned int value)
Method on IPAddressexplicit IPAddress (int value)
Method on IPAddressexplicit IPAddress (long value)
Method on IPAddressexplicit IPAddress (unsigned long value)

Creates an IP address equal to value, which is an IP address in network byte order.

Method on IPAddressIPAddress (struct in_addr value)
Creates an IP address equal to value.

Method on IPAddressexplicit IPAddress (const String &text)
Creates an IP address equal to text, which should be a dotted-quad string in ASCII.
For example, text might equal "18.26.4.44". If text does not parse into a dotted-
quad string, the resulting IPAddress equals 0.0.0.0.

Static Method on IPAddressIPAddress make prefix (int k)
Creates and returns an IP address with the upper k bits on and all other bits
off. k must be between 0 and 32, inclusive. For example, make_prefix(0)

equals 0.0.0.0, make_prefix(8) equals 255.0.0.0, and make_prefix(32) equals
255.255.255.255. The netmask corresponding to a CIDR address ‘addr/k’ equals
IPAddress::make_prefix(k).

2.8.2 Data

These methods return an IPAddress’s data in a variety of ways.

Method on IPAddressoperator bool () const

Returns true if and only if this IP address does not equal 0.0.0.0.

Method on IPAddressstruct in_addr in addr () const

Method on IPAddressoperator struct in addr () const

Returns this IP address as a struct in_addr object.

Method on IPAddressuint32_t addr () const

Method on IPAddressoperator uint32 t () const

Returns this IP address as an unsigned integer in network byte order.

Method on IPAddressconst unsigned char * data () const

Method on IPAddressunsigned char * data ()
Returns a pointer to this IP address’s data.

Method on IPAddressint mask to prefix len () const

Returns the prefix length k so that this IP address equals make_prefix(k), or −1 if
there is no such prefix length.

Chapter 2: Helper Classes 22

Functionunsigned hashcode (IPAddress addr)
Returns a number with the property that, for any two equal IP addresses addr1
and addr2, hashcode(addr1) == hashcode(addr2). With this function, IPAddresses
may be used as keys for HashMaps and BigHashMaps (see Section 2.5 [HashMap],
page 13).

2.8.3 Operations

Functionbool operator== (IPAddress addr1, IPAddress addr2)
Returns true if and only if addr1 equals addr2. Equivalent to addr1.addr() ==

addr2.addr().

Functionbool operator!= (IPAddress addr1, IPAddress addr2)
Returns true if and only if addr1 does not equal addr2.

Method on IPAddressbool matches prefix (IPAddress addr1,
IPAddress mask) const

Returns true if and only if this IPAddress matches the IP prefix specified by addr1
and the netmask mask. Equivalent to (addr() & mask.addr()) == addr1.addr().

Method on IPAddressbool submask (IPAddress mask) const

Returns true if and only if this IPAddress, interpreted as a netmask, is at least as
specific as mask. Equivalent to (addr() & mask.addr()) == mask.addr().

FunctionIPAddress operator& (IPAddress addr1, IPAddress addr2)
Returns a new IP address equal to addr1 masked by addr2. Equivalent to
IPAddress(addr1.addr() & addr2.addr()).

FunctionIPAddress operator| (IPAddress addr1, IPAddress addr2)
Returns a new IP address equal to the bitwise or of addr1 and addr2. Equivalent to
IPAddress(addr1.addr() | addr2.addr()).

FunctionIPAddress operator~ (IPAddress addr)
Returns a new IP address equal to the bitwise complement of addr. Equivalent to
IPAddress(~addr1.addr()).

Method on IPAddressIPAddress & operator&= (IPAddress addr1)
Masks this IP address by addr1 and returns the result. Equivalent to *this = (*this

& addr1).

Method on IPAddressIPAddress & operator|= (IPAddress addr1)
Bitwise-ors this IP address with addr1 and returns the result. Equivalent to *this =

(*this | addr1).

Chapter 2: Helper Classes 23

2.8.4 Unparsing

These functions unparse IP addresses, IP netmasks, and address/netmask pairs into
conventional ASCII text form.

Method on IPAddressString unparse () const

Method on IPAddressString s () const

Method on IPAddressoperator String () const

Unparses this IP address into dotted-quad ASCII form and returns the result as a
String object. A sample result might be "18.26.4.9".

Method on IPAddressString unparse mask () const

Unparses this IP address as a netmask. If the IP address equals make_

prefix(k) for some k, then the result is the ASCII decimal representation of
k. Otherwise, it is just the dotted-quad ASCII form of the IP address. For
example, IPAddress("18.26.4.9").unparse_mask() equals "18.26.4.9", but
IPAddress("255.0.0.0").unparse_mask() equals "8".

Method on IPAddressString unparse with mask (IPAddress mask) const

Unparses this IP address with mask as its netmask. The result has the form "ad-
drtext/masktext", where addrtext equals this->unparse() and masktext equals
mask.unparse_mask().

2.9 IP6Address

Chapter 3: Packets 24

3 Packets

The Packet class represents Click packets. The single Packet interface has multiple im-
plementations, one per driver. Inside the Linux kernel driver, a Packet object is equivalent
to a Linux sk_buff structure; most Packet methods are inline functions that expand to
sk_buff calls. The user-level driver, however, uses a purpose-built Packet implementation.

Click packets separate header information from data. The Packet * pointer points to a
header structure, which holds pointers to the actual packet data and a set of annotations.
Packet data may be shared by two or more packet headers. Packet headers, however, should
never be shared.

Packets come in two flavors, Packet and WritablePacket. A Packet object represents
a packet header whose data might be shared with other packets. Because of this potential
sharing, Packet data is read-only, and its methods return const pointers to data. A
WritablePacket object, in contrast, represents a packet header whose data is known not to
be shared. Its methods return non-const pointers. The uniqueify method turns a Packet

into a WritablePacket, possibly by making a copy of the packet’s data. WritablePacket

is a subclass of Packet, so you can turn a WritablePacket into a Packet implicitly.

The Packet and WritablePacket classes are defined in ‘<click/packet.hh>’.

3.1 Structure and Contents

Packet data is stored in a single flat array of bytes. There is no support for linked
chains à la BSD mbuf. The actual packet data is embedded inside a buffer that may be
much larger, leaving unused spaces called headroom and tailroom before and after the data
proper. Therefore, tasks like prepending a header need not always reallocate memory. If
the headroom is big enough, prepending space for a new header just requires bumping a
pointer.

This diagram shows how a typical packet is laid out, with the relevant Packet methods’
names.

data
|<- headroom ->|<----- length ----->|<- tailroom ->|
| | | |
+==============+====================+==============+
|XXXXXXXXXXXXXX| PACKET CONTENTS... |XXXXXXXXXXXXXX|
+==============+====================+==============+
| |
|<---------------- buffer_length ----------------->|

buffer_data

And here are those methods’ descriptions.

Method on Packetconst unsigned char * data () const

Returns a pointer to the packet data proper.

Method on Packetunsigned length () const

Returns the length of the packet data proper.

Chapter 3: Packets 25

Method on Packetconst unsigned char * buffer data () const

Returns a pointer to the buffer that contains the packet data.

Method on Packetunsigned headroom () const

Method on Packetunsigned tailroom () const

Method on Packetunsigned buffer length () const

Returns the length of the headroom area, the tailroom area, and the whole buffer,
respectively.

Method on WritablePacketunsigned char * data () const

Method on WritablePacketunsigned char * buffer data () const

These WritablePacket methods are identical to Packet’s data and buffer_data

methods except for their non-const return type.

Two invariants relate these methods’ values:

buffer_length() = headroom() + length() + tailroom()
data() = buffer_data() + headroom()

3.2 Creation and Destruction

Packets are created with the Packet::make static methods, and destroyed with the
Packet::killmethod. (The Packet and WritablePacket classes have private constructors
and destructors; you cannot create or destroy packets with new or delete.)

3.2.1 Packet::make

The make methods always take the length of the packet data; some of them take the
packet contents and the headroom and tailroom lengths as well. (The contents of any head-
room and tailroom areas are always undefined.) Most of them return a WritablePacket *,
since new packets are not shared.

The Packet class defines two constants related to packet creation, DEFAULT_HEADROOM
and MIN_BUFFER_LENGTH. Those make methods that do not take an explicit headroom
parameter use DEFAULT_HEADROOM instead. Furthermore, no make method will create a
packet with buffer length less than MIN_BUFFER_LENGTH. If the sum of a packet’s headroom
and length is less than this, the packet buffer is given extra tailroom to bump the buffer
length up to MIN_BUFFER_LENGTH. These constants have the values DEFAULT_HEADROOM

= 28 and MIN_BUFFER_LENGTH = 64.

Static Method on PacketWritablePacket * make (unsigned len)
Returns a new packet containing len bytes of undefined data.

Static Method on PacketWritablePacket * make
(const char *data, unsigned len)

Static Method on PacketWritablePacket * make
(const unsigned char *data, unsigned len)

Returns a new packet whose contents equal the first len bytes of data. data may be
a null pointer, in which case the packet contains len bytes of undefined data.

Chapter 3: Packets 26

Static Method on PacketWritablePacket * make (unsigned headroom,

const unsigned char *data, unsigned len, unsigned tailroom)
Returns a new packet containing headroom bytes of headroom, len bytes of contents,
and at least tailroom bytes of tailroom. The packet contents will equal the first len
bytes of data unless data is a null pointer, in which case the contents are undefined.

The following make method is only available in the user-level driver.

Static Method on PacketWritablePacket * make (unsigned char *data,
unsigned len, void (*destructor)(unsigned char *, size_t))

Returns a new packet that uses data as a buffer. That is, the new packet will have
the following characteristics:

buffer_data data
buffer_length len
headroom 0
length len
tailroom 0

When the resulting packet is destroyed, the function destructor will be called with
data and len as arguments. destructor may be a null pointer, in which case Packet

calls delete[] data instead.

This method lets a user-level element manage packet memory itself, rather than re-
lying on Packet.

See Section 3.3 [Packets and sk buffs], page 26, for a make method only available in the
Linux kernel driver.

3.2.2 Packet::kill

To destroy a Packet, simply call its kill method.

Method on Packetvoid kill ()
Frees this packet. If this packet contained the last reference to its data buffer, then
frees the data buffer as well.

3.3 Packets and sk_buffs

In the Linux kernel driver, Packet objects are equivalent to struct sk_buffs. This
avoids indirection overhead and makes it cheap to pass packets back and forth between
Linux and Click. The Packet operations described in this section are mostly inline functions
that expand to conventional sk_buff calls like skb_clone().

Click Packet sk_buffs should always have skb->users equal to 1. That is, the sk_buff
headers should not be shared, although the data buffers they point to may be shared.

The make, skb, and steal_skb methods described in this section convert Packets to
sk_buffs and vice versa.

Chapter 3: Packets 27

Static Method on PacketPacket * make (struct sk_buff *skb)
Returns a new packet equivalent to the sk_buff skb. All of skb’s data pointers and
annotations are left unchanged. This method generally does nothing, since Packets
and sk_buffs are equivalent in the Linux kernel. However, if skb->users field is
bigger than 1, the method will return a clone of skb. This method returns a Packet

*, not a WritablePacket *, because the skb argument might share data with some
other sk_buff.

Do not use or manipulate skb after passing it to this method, since Click and the
Packet implementation now own skb.

Method on Packetstruct sk_buff * skb ()
Method on Packetconst struct sk_buff * skb () const

Returns the sk_buff corresponding to this packet. Use this method to examine the
sk_buff version of a Packet.

Do not pass the result to a function that might free it or increment its users field;
use steal_skb for that.

Method on Packetstruct sk_buff * steal skb ()
Returns the sk_buff corresponding to this packet. Use this method to permanently
change a Packet into an sk_buff—for example, to create an sk_buff you’d like to
send to Linux.

Do not use or manipulate a Packet after calling its steal_skb method, since Linux
now owns the resulting sk_buff.

3.4 Sharing—clone and uniqueify

The clone method creates a new packet header that shares data with an existing packet.
The uniqueify method, in contrast, ensures that a packet’s data is not shared by anyone,
perhaps by making a copy of the data.

Method on PacketPacket * clone ()
Creates and returns a new packet header that shares this packet’s data. The new
packet’s annotations are copied from this packet’s annotations.

The result may be a null pointer if there was not enough memory to make a new
packet header.

Method on PacketWritablePacket * uniqueify ()
Ensures that this packet does not share data with any other packet. This may involve
copying the packet data, and perhaps creating a new packet header, but if this packet
is already unshared, no real work is required. Returns a WritablePacket * because
the new packet is unshared.

Do not use, manipulate, or free a Packet after calling its uniqueify method. Ma-
nipulate the returned WritablePacket * instead.

The result may be a null pointer if there was not enough memory to make a required
data copy. In this case, the old packet is freed.

Chapter 3: Packets 28

Method on Packetbool shared () const

Returns true if and only if this packet shares data with some other packet.

3.5 Buffer Manipulation—push, pull, put, and take

The push, pull, put, and take methods manipulate a packet’s contents by adding or
removing space from its headroom or tailroom. Given a packet, use push to add space to
its beginning, pull to remove space from its beginning, put to add space to its end, and
take to remove space from its end. The methods that add space, push and put, uniqueify
the relevant packet as a side effect. This ensures that the packet’s data is unshared so you
can immediately manipulate the added space.

Method on PacketWritablePacket * push (unsigned amt)
Adds amt bytes of space to the beginning of the packet’s data and returns the resulting
packet. The new space is uninitialized. The result will not share data with any other
packet; thus, it is a WritablePacket *. If this packet is unshared and its headroom is
bigger than amt, then this operation is cheap, amounting to a bit of pointer arithmetic.
Otherwise, it requires copying the packet data and possibly creating a new packet
header.

Do not use, manipulate, or free a Packet after calling its push method. Manipulate
the returned WritablePacket * instead.

The result may be a null pointer if there was not enough memory to make a required
new packet. In this case, the old packet is freed.

Method on Packetvoid pull (unsigned amt)
Removes amt bytes of space from the beginning of the packet’s data. amt must be less
than or equal to the packet’s length(). This operation is always cheap, amounting
to a bit of pointer arithmetic.

Method on PacketWritablePacket * put (unsigned amt)
Adds amt bytes of space to the end of the packet’s data and returns the resulting
packet. The new space is uninitialized. The result will not share data with any other
packet; thus, it is a WritablePacket *. If this packet is unshared and its tailroom is
bigger than amt, then this operation is cheap, amounting to a bit of pointer arithmetic.
Otherwise, it requires copying the packet data and possibly creating a new packet
header.

Do not use, manipulate, or free a Packet after calling its put method. Manipulate
the returned WritablePacket * instead.

The result may be a null pointer if there was not enough memory to make a required
new packet. In this case, the old packet is freed.

Method on Packetvoid take (unsigned amt)
Removes amt bytes of space from the end of the packet’s data. amt must be less than
or equal to the packet’s length(). This operation is always cheap, amounting to a
bit of pointer arithmetic.

Chapter 3: Packets 29

The push and put methods have “nonunique” variants, nonunique_push and
nonunique_put, which do not have the side effect of uniqueifying their resulting packet.
These methods are rarely used.

Method on PacketPacket * nonunique push (unsigned amt)
Adds amt bytes of space to the beginning of the packet’s data and returns the resulting
packet. The new space is uninitialized. The result may share data with other packets.
If this packet’s headroom is bigger than amt, then this operation is cheap, amounting
to a bit of pointer arithmetic. Otherwise, it requires copying the packet data and
possibly creating a new packet header.

Do not use, manipulate, or free a Packet after calling its nonunique_push method.
Manipulate the returned Packet * instead.

The result may be a null pointer if there was not enough memory to make a required
new packet. In this case, the old packet is freed.

Method on PacketPacket * nonunique put (unsigned amt)
Adds amt bytes of space to the end of the packet’s data, returning the resulting packet.
The new space is uninitialized. The result may share data with other packets. If this
packet’s tailroom is bigger than amt, then this operation is cheap, amounting to a
bit of pointer arithmetic. Otherwise, it requires copying the packet data and possibly
creating a new packet header.

Do not use, manipulate, or free a Packet after calling its nonunique_put method.
Manipulate the returned Packet * instead.

The result may be a null pointer if there was not enough memory to make a required
new packet. In this case, the old packet is freed.

3.6 Annotations

Each packet header has space for a number of annotations, extra information about the
packet that is not contained in its data. Click supports header annotations, which indicate
where in the packet a network header, such as an IP header, is located; user annotations,
whose semantics are left undefined by Click—different elements can treat them in different
ways; and other specialized annotations, such as the timestamp annotation, the destination
IP address annotation, and so forth.

New packets begin with all annotations cleared: numeric annotations are zero, pointer
annotations are null pointers. clone, uniqueify, and their equivalents always copy each
of the original packet’s annotations in the appropriate way. (For example, the new header
annotations will point into the new data, if a data copy was made.)

3.6.1 Header Annotations

Many packets contain a network header of some kind, such as an IP header. This header
may be located anywhere in the packet depending on how the packet was encapsulated.
Furthermore, the data encapsulated by that network header may be located anywhere after
the network header, given the presence of options. With the network header annotation
and the transport header annotation, one element can determine where a network header

Chapter 3: Packets 30

is and how long it is, then store this information for other elements to use. For example,
the CheckIPHeader element sets the header annotations on packets it receives. Elements
like SetIPDSCP then require a non-null IP header annotation on their input packets.

The header annotations on new packets are each set to a null pointer.

Method on Packetconst unsigned char * network header () const

Method on WritablePacketunsigned char * network header () const

Returns the network header annotation. The resulting pointer is read-only on Packets
and read/write on WritablePackets.

Method on Packetconst unsigned char * transport header () const

Method on WritablePacketunsigned char * transport header () const

Returns the transport header annotation. The resulting pointer is read-only on
Packets and read/write on WritablePackets.

Method on Packetint network header offset () const

Returns the offset from data() to network_header(). The result might be negative,
since the data pointer may have been advanced past the network header annotation
with the pull method.

Method on Packetint network header length () const

Returns the network header’s length. This equals transport_header() − network_

header().

Method on Packetunsigned transport header offset () const

Returns the offset from data() to transport_header(). The result might be neg-
ative, since the data pointer may have been advanced past the transport header
annotation with the pull method.

Several invariants relate these methods’ values whenever the header annotations are
non-null:

buffer_data() ≤ network_header() ≤ transport_header()
≤ buffer_data() + buffer_length()

network_header_offset() = network_header() − data()
transport_header_offset() = transport_header() − data()
network_header_length() = transport_header() − network_header()

Set the network and transport header annotations simultaneously with the
set_network_header method.

Method on Packetvoid set network header (const unsigned char *header,
unsigned len)

Sets the network header annotation to header, which must lie between buffer_data()

and buffer_data() + buffer_length(). The network header is len bytes long, so
network_header_length()will equal len and transport_header()will equal header
+ len.

Chapter 3: Packets 31

3.6.1.1 Typed Header Annotations

For convenience, Packet provides methods for accessing and setting the network header
annotation as an IP or IPv6 header. These methods use the same annotations as the generic
network_header methods; they are just typed differently.

Method on Packetconst click_ip * ip header () const

Method on WritablePacketclick_ip * ip header () const

Method on Packetconst click_ip6 * ip6 header () const

Method on WritablePacketclick_ip6 * ip6 header () const

Returns network_header() as a pointer to an IP or IPv6 header structure.

Method on Packetint ip header offset () const

Method on Packetunsigned ip header length () const

Method on Packetint ip6 header offset () const

Method on Packetunsigned ip6 header length () const

Equivalent to network_header_offset() and network_header_length().

Method on Packetvoid set ip header (const click_ip *header,
unsigned len)

Method on Packetvoid set ip6 header (const click_ip6 *header,
unsigned len)

Equivalent to set_network_header(header, len).

Method on Packetvoid set ip6 header (const click_ip6 *header)
Equivalent to set_ip6_header(header, 40).

Method on Packetconst click_tcp * tcp header () const

Method on WritablePacketclick_tcp * tcp header () const

Method on Packetconst click_udp * udp header () const

Method on WritablePacketclick_udp * udp header () const

Returns transport_header() as a pointer to a TCP or UDP header structure.

3.6.2 User Annotations

Each packet header has a user annotation area, space reserved for arbitrary annotations.
Different methods access this space as an array of bytes, integers, or unsigned integers.
The Packet class does not assign semantics to any particular byte in the user annotation
area. Instead, macros in ‘<click/packet_anno.hh>’ provide names for particular bytes.
Some of these names have overlapping byte ranges; the user must take care not to define
a configuration whose elements use an annotation byte on a packet for different purposes.
The next section describes the macros in Click’s default ‘<click/packet_anno.hh>’.

These constants define the size of the annotation area.

Packet::USER_ANNO_SIZE

The size of the annotation area in bytes.

Chapter 3: Packets 32

Packet::USER_ANNO_US_SIZE

The size of the annotation area in unsigned shorts.

Packet::USER_ANNO_S_SIZE

The size of the annotation area in shorts.

Packet::USER_ANNO_U_SIZE

The size of the annotation area in unsigned ints.

Packet::USER_ANNO_I_SIZE

The size of the annotation area in ints.

Currently, USER_ANNO_SIZE is 24, USER_ANNO_U_SIZE and USER_ANNO_I_SIZE are both 6,
and USER_ANNO_US_SIZE and USER_ANNO_S_SIZE are both 12.

The user annotation area may be accessed as an array of bytes, an array of unsigned
ints, or an array of ints. The elements of these arrays are numbered from 0 to k−1, where
k is the appropriate SIZE constant.

Method on Packetunsigned char user anno c (int i) const
Returns the ith byte in the user annotation area. i must be between 0 and USER_

ANNO_SIZE − 1.

Method on Packetunsigned user anno u (int i)
Method on Packetint user anno i (int i)

Returns the ith unsigned int or int in the user annotation area. i must be between
0 and USER_ANNO_U_SIZE − 1. The ith unsigned int or int annotation occupies
bytes 4i through 4i+3 of the user annotation area.

Method on Packetvoid set user anno c (int i, unsigned char value)
Method on Packetvoid set user anno u (int i, unsigned value)
Method on Packetvoid set user anno i (int i, int value)

Sets the ith byte, unsigned int, or int user annotation to value.

Method on Packetunsigned * all user anno u ()
Returns a pointer to the user annotation area, treated as an array of unsigned ints.

3.6.3 Specific User Annotations

The ‘<click/packet_anno.hh>’ header file defines macros for accessing a packet’s user
annotation area by name. These macros follow some simple guidelines. Each user annota-
tion is given a name like ‘PAINT’ or ‘FIX_IP_SRC’. Then, two macros are written for each
annotation, name_ANNO and SET_name_ANNO.

Macroname ANNO (const Packet *p)
Returns the value of p’s name annotation.

MacroSET name ANNO (Packet *p, value)
Sets p’s name annotation to value.

Chapter 3: Packets 33

For example, here are the definitions of PAINT_ANNO and SET_PAINT_ANNO from Click’s
default ‘<click/packet_anno.hh>’.

#define PAINT_ANNO(p) ((p)->user_anno_c(0))
#define SET_PAINT_ANNO(p, v) ((p)->set_user_anno_c(0, (v)))

This table lists the annotations declared in Click’s default ‘<click/packet_anno.hh>’.

Annotation name Type Bytes Some relevant elements
PAINT unsigned char 0 Paint , CheckPaint , PaintTee
ICMP_PARAM_PROB unsigned char 1 IPGWOptions, ICMPError
FIX_IP_SRC unsigned char 3 ICMPError , FixIPSrc
FWD_RATE int 4–7 IPRateMonitor
REV_RATE int 8–11 IPRateMonitor

3.6.4 Other Annotations

Packet headers have space for four other particular annotations, and special methods
for accessing them. These annotations do not overlap the user annotation area. There are
annotations that hold a destination IP address, a timestamp, the device on which the packet
arrived, a packet type constant, and, in the Linux kernel module, a performance counter
value.

3.6.4.1 Destination Address

The destination address annotation stores the IP or IPv6 address of the next hop towards
the packet’s destination. Elements check and manipulate this address, rather than the
IP header’s destination address, since the next-hop address often differs from the final
destination. The destination IP address and IPv6 address are different annotations, but
they overlap; you may set only one at a time.

Method on PacketIPAddress dst ip anno () const

Returns this packet’s destination IP address annotation.

Method on Packetconst IP6Address & dst ip6 anno () const

Returns a reference to this packet’s destination IPv6 address annotation.

Method on Packetvoid set dst ip anno (IPAddress value)
Method on Packetvoid set dst ip6 anno (const IP6Address &value)

Sets this packet’s destination IP or IPv6 address annotation to value.

The destination IP address annotation is set by the GetIPAddress and SetIPAddress
elements, manipulated by LookupIPRoute and its cousins, and used by ARPQuerier . It
defaults to zero.

Chapter 3: Packets 34

3.6.4.2 Timestamp

The timestamp annotation generally indicates when a packet was received.

Method on Packetconst struct timeval & timestamp anno () const

Method on Packetstruct timeval & timestamp anno ()
Returns a reference to this packet’s timestamp annotation.

Method on Packetvoid set timestamp anno (const struct timeval &value)
Sets this packet’s timestamp annotation to value.

Method on Packetvoid set timestamp anno (int sec, int usec)
Sets this packet’s timestamp annotation to sec and usec. Equivalent to struct

timeval tv; tv.tv_sec = sec; tv.tv_usec = usec; set_timestamp_anno(tv).

Linux device drivers set this annotation, so packets emitted by FromDevice and PollDe-
vice in the Linux kernel driver have the annotation set. Packet sources like InfiniteSource
and RatedSource also set the annotation, as does FromDump in the user-level driver. De-
bugging elements like Print generally take a keyword argument that makes them print
packet timestamps.

The timestamp annotation defaults to zero.

3.6.4.3 Device

In the Linux kernel, packets received from some device are annotated with a pointer to
the relevant struct net_device object. (In versions of the kernel prior to 2.3, this type
was called struct device.) The Packet class provides access to this annotation. The
annotation has type net_device *; Click defines net_device as a synonym for struct

device in kernel versions 2.2 and prior.

Method on Packetnet_device * device anno () const

Returns this packet’s device annotation.

Method on Packetvoid set device anno (net_device *value)
Sets this packet’s device annotation to value.

In the user-level driver, device_anno always returns 0, and set_device_anno does nothing.

The ARPResponder element sets this annotation on every generated response to the
value of the annotation on the relevant query. Because of this, those responses can be safely
forwarded to Linux: Linux’s ARP-response code requires a correct device annotation.

The device annotation defaults to a null pointer.

Chapter 3: Packets 35

3.6.4.4 Packet Type

The packet type annotation specifies how a packet was received. Its value is one of the
following constants, which are defined in the Packet::PacketType enumeration.

‘HOST’ The packet was sent to this host.

‘BROADCAST’
The packet was sent to a link-level broadcast address.

‘MULTICAST’
The packet was sent to a link-level multicast address.

‘OTHERHOST’
The packet was sent to a different host, but received anyway. The relevant
device is probably in promiscuous mode.

‘OUTGOING’
The packet was generated at this host and is being sent to another host.

‘LOOPBACK’, ‘FASTROUTE’
See the Linux kernel documentation. These values correspond to
‘PACKET_LOOPBACK’ and ‘PACKET_FASTROUTE’, which are defined in
‘<linux/if_packet.h>’.

Method on PacketPacket::PacketType packet type anno () const

Returns this packet’s packet type annotation.

Method on Packetvoid set packet type anno (Packet::PacketType value)
Sets this packet’s packet type annotation to value.

In the Linux kernel, device drivers set the packet type annotation for the packets they
receive. Thus, the FromDevice and PollDevice elements generate packets with correct
packet type annotations. The user-level driver’s FromDevice also sets the packet type
annotation. The ICMPError and DropBroadcasts elements use the annotation’s value.

The packet type annotation defaults to Packet::HOST.

3.6.4.5 Performance Counter

This annotation is available only in the Linux kernel driver. Its value is an unsigned

long long that generally corresponds to some performance counter value.

Method on Packetunsigned long long perfctr anno () const

Returns this packet’s performance counter annotation.

Method on Packetvoid set perfctr anno (unsigned long long value)
Sets this packet’s performance counter annotation to value.

The SetCycleCount , SetPerfCount , CycleCountAccum, and PerfCountAccum elements
manipulate this annotation. Its default value is zero.

Chapter 3: Packets 36

3.6.5 Annotations In General

Packet provides methods for clearing a packet’s annotations, and for copying all of a
packet’s annotations from another packet.

Method on Packetvoid clear annotations ()
Clears all of this packet’s annotations to their default state, which is generally zero.

Method on Packetvoid copy annotations (const Packet *p)
Copies all of p’s annotations into this packet except for its header annotations. (This
packet’s current header annotations are left unchanged.)

3.7 Out-of-Memory Conditions

Any method that potentially allocates memory for a Packet may fail due to an out-of-
memory condition. The complete list of these methods follows:

• make variants

• clone

• uniqueify

• push

• put

• nonunique_push

• nonunique_put

These methods always return a null pointer on out-of-memory. Methods that manipulate ex-
isting packets—uniqueify, push, put, nonunique_push, and nonunique_put—additionally
free any existing packet before returning a null pointer. You should always check the results
of these methods to see if you have run out of memory.

Chapter 4: Element Characteristics 37

4 Element Characteristics

4.1 Element Class

Every element belongs to a single element class, and every element class has a name.
The class_name virtual function returns that name.

Method on Elementvirtual const char * class name () const

Returns the element’s class name as a null-terminated C string. This method has no
default implementation; every element must supply a definition.

The class_name method should be declared on a single line in the element’s class
definition, and should return a C string constant. This makes the element’s class
name easy to automatically extract from the source code.

Here is a typical class_name method.

class ARPQuerier : public Element { public: // ...
const char *class_name() const { return "ARPQuerier"; }

}

Click creates new element objects by calling their default, zero-argument constructors.
The resulting element should not be configured or initialized. It will be configured inde-
pendently through element initialization methods; see Chapter 5 [Element Initialization],
page 42, for more information.

4.2 Casting

Each element conforms to one or more named interfaces. Each element class is an
interface, whose name is just the element class name, but the user can create additional
interfaces at will. Generally, these interfaces export functionality that elements may be
interested in, but that is not specific to any one element class. For example, the Storage
interface provides information about how many packets are stored in an element; elements
that implement this interface include Queue, FrontDropQueue, and FromDevice. Elements
interested in packet storage, such as RED , then look for Storage elements, making them
independent of any particular storage strategy.

A caller can discover whether an element implements a particular interface by calling its
cast method. This method takes an interface name and returns a non-null pointer if and
only if the element implements that interface.

Method on Elementvirtual void * cast (const char *name)
The name argument is an interface name, represented as a null-terminated C string.
If this element implements the name interface, cast should return a pointer to the
corresponding data. If it does not, cast should return a null pointer.

The default representation returns this if name equals the element’s class_name(),
or a null pointer if it does not.

Chapter 4: Element Characteristics 38

Some care is required when one element class is a subclass of another. Say that element
class Derived is a subclass of Base. Then Derived’s cast method should return a non-null
pointer when passed either "Derived", "Base", or any additional interfaces that Derived

or Base might implement. Here is a first try at Derived’s cast implementation:

void *
Derived::cast(const char *name)
{

if (strcmp(name, "Derived") == 0)
return (Derived *)this;

else // rely on Base::cast to check for "Base"
return Base::cast(name);

}

This code is correct and preferred as long as Base has its own cast implementation. Unfor-
tunately, if Base took advantage of cast’s default implementation, which uses class_name,
the code is broken. Since a Derived element’s class_name method returns "Derived", the
default cast method will check only for "Derived", not for "Base" as we wished. The
solution is either to write an explicit cast method for Base, or to write Derived::cast

differently—like so, for example:

void *
Derived::cast(const char *name)
{

if (strcmp(name, "Derived") == 0)
return (Derived *)this;

else if (strcmp(name, "Base") == 0)
return (Base *)this;

else
return 0;

}

Always explicitly cast this to the correct type before returning it. This is important
because of multiple inheritance, where the value of a pointer to a supertype may be different
from the value of this. (The type system generally determines when pointer arithmetic is
necessary, but the void * return type hides this type information from cast’s caller.)

We encourage you to write simple cast methods that compare the name argument
against a set of fixed strings. Arbitrary computation inside cast is discouraged; we may
eventually want to analyze cast definitions.

Click uses a cast method rather than C++’s standard dynamic_cast mechanism because
it’s difficult to use dynamic_cast in the Linux kernel.

4.3 Names

Each element in a router configuration has a name under which it was declared and a
landmark, a string indicating where it was declared in the configuration file.

Method on ElementString id () const

Returns the element’s name.

Chapter 4: Element Characteristics 39

Method on ElementString declaration () const

Returns a textual representation of the element’s declaration. The result has the form
‘id :: cname’, where id is the element’s id() and cname is its class_name().

Method on ElementString landmark () const

Returns a string indicating where the element was declared in the configuration file.
The result generally has the form ‘filename:linenumber’.

4.4 Router Relationship

Elements may be part of some router configuration, which is represented by a Router

object. Elements in a Router are numbered between 0 and that router’s nelements();
eindex returns that number.

Method on ElementRouter * router () const

Returns the element’s corresponding Router object.

Method on Elementint eindex () const

Returns the element’s index in its router.

Method on Elementint eindex (Router *r) const
Returns the element’s index in its router, if that router is r, or −1, if that router is
not r. Equivalent to:

return (router() == r ? eindex() : -1);

4.5 Creating Ports

These methods return or change how many input and output ports an element has.

Method on Elementint ninputs () const

Method on Elementint noutputs () const

Returns the element’s number of input or output ports.

The set_ and add_ methods, which add or remove ports, must be called only by the
element itself. For example, the Click infrastructure never calls set_ninputs or set_

noutputs. Click will inform the element how many of its ports were used in a particular
router configuration; see Section 5.1 [notify ninputs notify noutputs], page 42.

You may change an element’s number of ports only during router initialization. You may
not, for example, call set_ninputs at run time, or even during the element’s initialize

method (see Section 5.7 [initialize], page 48). See Section 4.7 [When to Call Element
Methods], page 41, for more information.

Method on Elementvoid set ninputs (int n) const

Method on Elementvoid set noutputs (int n) const

Sets the element’s number of input or output ports to n, which must be greater than
or equal to zero.

Chapter 4: Element Characteristics 40

Method on Elementvoid add input () const

Method on Elementvoid add output () const

Add an input or output port to the element. Same as set_ninputs(ninputs() + 1)

or set_noutputs(noutputs() + 1).

4.6 Using Ports

Each of an element’s input and output ports is represented by an Element::Port object.
The input and output methods return the Port object corresponding to a given port
number.

Method on Elementconst Port & input (int p) const
Method on Elementconst Port & output (int p) const

Returns the Element::Port object corresponding to the element’s pth input or output
port. p must be a valid port number: greater than or equal to zero and less than
ninputs() or noutputs(), respectively.

The following methods return information about a port. input_is_pull and output_

is_push are Element methods; the rest are methods on Element::Port. All of these
methods return meaningful results only after the router has been partially initialized; see
Section 4.7 [When to Call Element Methods], page 41.

Method on Elementbool input is pull (int p) const
Method on Elementbool output is push (int p) const

Returns true if input port p is pull or output port p is push, respectively. p must be
a valid port number.

Method on Element::PortElement * element () const

Returns the element this port is connected to, if one exists. Pull input ports and
push output ports are always connected to another element; push input ports and
pull output ports never are. element() returns a null pointer when called on a push
input port or pull output port.

Method on Element::Portint port () const

Returns the port number this port is connected to, if one exists. Pull input ports and
push output ports are always connected to another port; push input ports and pull
output ports never are. port() returns −1 when called on a push input port or pull
output port.

For example, consider this router configuration.

x :: X; y :: Y;
x [0] -> [1] y; // push connection

Because x [0] is a push output port, x->output(0).element() will return y and
x->output(0).port() will return 1. On the other hand, y->input(1).element() will
return a null pointer and y->input(1).port() will return −1.

The element and port methods only supply local information about how elements are
connected. Furthermore, they provide no information about how push input ports and pull

Chapter 4: Element Characteristics 41

output ports are connected. For these reasons, most elements interested in router config-
uration topology call Router’s upstream_elements and downstream_elements methods
instead.

4.7 When Element Methods May Be Called

This chart shows when it is OK to call particular Element methods. Methods not
mentioned here are generally not called by the user.

Method Name constr notify config init run
+-------------------------------+------+------+------+------+------+
class_name, cast	OK	OK	OK	OK	OK
id, declaration, landmark		OK	OK	OK	OK
router, eindex		OK	OK	OK	OK
+-------------------------------+------+------+------+------+------+					
ninputs, noutputs	OK	OK	OK	OK	OK
set_ninputs, set_noutputs	OK	OK	OK		
add_input, add_output	OK	OK	OK		
+-------------------------------+------+------+------+------+------+					
input, output				OK	OK
input_is_pull, output_is_push				OK	OK
Port::element, Port::port				OK	OK
+-------------------------------+------+------+------+------+------+
Method Name constr notify config init run

The headings denote:

‘constr’ Construction time. This includes the element’s constructor and its destructor.

‘notify’ Inside the notify_ninputs and notify_noutputs methods.

‘config’ Inside the configure method.

‘init’ Inside the add_handlers, initialize, and uninitialize methods.

‘run’ At run time. That is, inside some push or pull method, or some task or timer
callback, or some handler, or some function called from one of these places.

Chapter 5: Element Initialization 42

5 Element Initialization

The process of making an element ready for inclusion in an active router is called element
initialization. This includes processing the element’s configuration string, setting up internal
state and any input and output ports, and querying the router about neighboring elements.

Every element in an active router must have successfully initialized. If there is an
error initializing even one element, the router is aborted. Router initialization happens
in sequential phases: every element must successfully complete one phase before the next
phase begins.

5.1 notify_ninputs and notify_noutputs

The router calls each element’s notify_ninputs and notify_noutputs methods to tell
it how many of its input and output ports were used in the configuration. A port is used if
it is used in a connection.

Method on Elementvirtual void notify ninputs (int ninputs)
Method on Elementvirtual void notify noutputs (int noutputs)

The ninputs and noutputs arguments specify how many input and output ports were
used in the configuration. For example, if ninputs is 5, then input ports 0 through 4
were used.1

These methods’ default implementations do nothing.

notify_ninputs and notify_noutputs are called early in the initialization process—
before configure, for example, and before ports are assigned to push or pull. They may
create and destroy input and output ports or set other private element state.

A notify_ninputs or notify_noutputs method should generally be very short and
stylized. It should call no Element methods except for possibly set_ninputs or set_

noutputs. This typical notify_noutputs method sets the element’s number of outputs to
one or two, depending on how many outputs were actually used:

void
ARPQuerier::notify_noutputs(int n)
{

set_noutputs(n < 2 ? 1 : 2);
}

There is no need to supply a notify_ninputs or notify_noutputs method if your
element has a fixed number of inputs or outputs.

1 Strictly speaking, it is possible that one or more of the lower-numbered ports were not used—for example,
that input port 0 was not used by the configuration. This is always a configuration error, however. A
later stage will report unused ports as errors and abort router initialization.

Chapter 5: Element Initialization 43

5.2 configure_phase—Initialization Order

Some elements depend on being configured and initialized before or after other elements.
For example, the AddressInfo element must be configured before all other elements, since
its address abbreviations must be available in their configuration strings. The configure_

phase method makes this possible.

Method on Elementvirtual int configure phase () const

Returns the element’s configure phase, an integer that specifies when it should be
configured and initialized relative to other elements.

An element with a low configure phase will be configured before an element with a
high configure phase. Elements with the same configure phase might be configured
in any order relative to one another.

The following basic configure phase constants are defined in <click/element.hh>:

CONFIGURE_PHASE_FIRST

Configure before most other elements. Only used by AddressInfo in the
Click distribution.

CONFIGURE_PHASE_INFO

Configure early. Appropriate for most information elements.

CONFIGURE_PHASE_DEFAULT

Default configuration phase. Appropriate for most elements.

CONFIGURE_PHASE_LAST

Configure after most other elements. No elements in the Click distribution
use this configure phase.

configure_phase may also return a number based on these constants. For example,
all FromLinux elements should be initialized before any ToDevice elements. The
FromLinux element therefore contains the following definitions:

enum { CONFIGURE_PHASE_FROMLINUX = CONFIGURE_PHASE_DEFAULT,
CONFIGURE_PHASE_TODEVICE = CONFIGURE_PHASE_FROMLINUX + 1 };

FromLinux::configure_phase returns CONFIGURE_PHASE_FROMLINUX, and
ToDevice::configure_phase returns FromLinux::CONFIGURE_PHASE_TODEVICE.

The default implementation returns CONFIGURE_PHASE_DEFAULT.

Click uses all elements’ configure phases to construct a single element configuration
order. It then configures elements in this order and, if there were no errors, initializes them
in the same order. The configure_phase method is called once, relatively early—before
configure and initialize.

An element’s configure phase should depend only on its class. In particular, the body
of a configure_phase method should consist of a single return statement returning some
constant.

Chapter 5: Element Initialization 44

5.3 configure—Parsing Configure Strings

The configure method is passed the element’s configuration string. This method is
expected to parse the configuration string, report any errors, and initialize the element’s
internal state.

Method on Elementvirtual int configure (Vector<String> &conf,
ErrorHandler *errh)

The conf argument is the element’s configuration string, divided into configuration
arguments by splitting at commas, and with comments and leading and trailing white-
space removed. If conf is empty, the element was not supplied with a configuration
string (or its configuration string contained only comments and whitespace).

Any errors, warnings, or messages should be reported to errh. Messages should not
specify the element name or type; this information will be supplied externally.

This method should return zero if configuration succeeds, or a negative number if it
fails. Returning a negative number prevents the router from initializing.

The default configure method succeeds if and only if there are no configuration
arguments.

The method may modify conf however it would like.

configure is called relatively early in the initialization process. For instance, configure
may create or destroy input and output ports—the port validity check happens after
configure completes. configure cannot determine whether a port is push or pull; neither
can it query the router for information about its neighbors.

A configure method should not perform potentially harmful actions, such as truncating
files or attaching to devices. These actions should be left for the initialize method, which
is called later. This avoids harm if another element cannot be configured, or if the router
is incorrectly connected, since in these cases initialize will never be called.

The conf argument is created by calling cp_argvec on the element’s configuration string;
see Section 7.3 [Config String Splitting], page 61.

5.4 processing—Push and Pull Processing

Elements use the processing method to specify whether their ports are push, pull, or
agnostic. This method returns a processing code—an ASCII string that, properly inter-
preted, specifies the processing type for each port.

Method on Elementvirtual const char * processing () const

Returns the element’s processing code as a null-terminated C string.

Processing codes look like this:

‘inputspec/outputspec’

Each of inputspec and outputspec is a sequence of ‘h’, ‘l’, and ‘a’ characters, containing at
least one character. ‘h’ indicates a push port, ‘l’ a pull port, and ‘a’ an agnostic port. The
first character in each sequence represents the first port (port 0), and so forth. For example,

Chapter 5: Element Initialization 45

"a/ah" says that the element’s first input and first output ports are both agnostic, but the
second output port is push.

Inputspec and outputspec need not have the correct numbers of characters. The last
character in each specification is duplicated as many times as necessary, and any extra
characters are ignored. Thus, the processing codes "aaaaaaaa/haaaaaaa" and "a/ha"

behave identically.

The Element class provides mnemonic names for five common processing codes:

AGNOSTIC "a/a" (agnostic ports).

PUSH "h/h" (push ports).

PULL "l/l" (pull ports).

PUSH_TO_PULL

"h/l" (push input ports, pull output ports).

PULL_TO_PUSH

"l/h" (pull input ports, push output ports).

The default implementation for Element::processing returns AGNOSTIC.

The processing method should be declared on a single line in the element’s class def-
inition. It should return a C string constant or one of the five mnemonic names above.
These guidelines make the element’s processing code easy to automatically extract from the
source code.

Here is a typical processing method.

class ARPQuerier : public Element { public: // ...
const char *processing() const { return PUSH; }

}

5.5 flow_code—Packet Flow Within an Element

Connections determine how packets flow between elements in a router configuration.
Packets flow within elements as well: packets arriving on an element’s input port will then
be emitted on zero or more output ports, possibly after some modification. The user supplies
connection information explicitly, but information about packet flow within an element is
provided by the element itself, via its flow_code method. This method returns a flow
code: an ASCII string that, properly interpreted, defines how packets may travel within
the element.

Method on Elementvirtual const char * flow code () const

Returns the element’s flow code as a null-terminated C string.

Flow codes look like ‘inputspec/outputspec’, where each of inputspec and outputspec is
a sequence of port codes. The simplest port code is a single letter. Packets can travel from
an input port to an output port if and only if the port codes match. (Case is significant.)
For example, the flow code "x/x" says that packets can travel from the element’s input
port to its output port, while "x/y" says that packets never travel between ports.

A port code may also be a sequence of letters in brackets, such as ‘[abz]’. Two port
codes match iff they have at least one letter in common, so ‘[abz]’ matches ‘a’, but ‘[abz]’

Chapter 5: Element Initialization 46

and ‘[cde]’ do not match. The opening bracket may be followed by a caret ‘^’; this makes
the port code match letters not mentioned between the brackets. Thus, the port code
‘[^abc]’ is equivalent to ‘[ABC...XYZdef...xyz]’.

Finally, the ‘#’ character is also a valid port code, and may be used within brackets.
One ‘#’ matches another ‘#’ only when they represent the same port number—for example,
when one ‘#’ corresponds to input port 2 and the other to output port 2. ‘#’ never matches
any letter. Thus, for an element with exactly 2 inputs and 2 outputs, the flow code "##/##"
behaves like "xy/xy".

Inputspec and outputspec need not have the correct numbers of port codes. The last
code in each specification is duplicated as many times as necessary, and any extra codes
are ignored. Thus, the flow codes "[x#][x#][x#][x#]/x######" and "[x#]/x#" behave
identically.

This table describes some simple flow codes.

"x/x" Packets may travel from any input port to any output port. Most elements use
this flow code.

"xy/x" Packets arriving on input port 0 may travel to any output port, but those
arriving on other input ports will not be emitted on any output. ARPQuerier
uses this flow code.

"x/y" Packets never travel between input and output ports. Idle and Error use this
flow code. So does KernelTap, since its input port and output port are decou-
pled (packets received on its input are sent to the kernel; packets received from
the kernel are sent to its output).

"#/#" Packets arriving on input port K may travel only to output port K. Suppressor
uses this flow code.

"#/[^#]" Packets arriving on input port K may travel to any output port except K.
EtherSwitch uses this flow code.

The Element class provides a mnemonic name for a common flow code:

COMPLETE_FLOW

"x/x" (packets travel from any input to all outputs).

The default implementation for Element::processing returns COMPLETE_FLOW.

The flow_code method should be declared on a single line in the element’s class defini-
tion. It should return a C string constant or COMPLETE_FLOW. These guidelines make the
element’s flow code easy to extract from the source code.

Here is a typical flow_code method.

class ARPQuerier : public Element { public: // ...
const char *flow_code() const { return "xy/x"; }

}

Most elements do not declare a flow_code method, relying on the default implementation
instead.

Click uses flow code information in its agnostic port assignment algorithm and its algo-
rithms for finding upstream and downstream elements.

Chapter 5: Element Initialization 47

5.5.1 What Is a Flow Code?

Flow codes conveniently encode a more primitive concept, flow matrices. An element’s
flow matrix, M , is a Boolean matrix with ninputs rows and noutputs columns. The matrix
element m[i, j] is true if and only if packets can “travel” from input port i to output port
j. Note that this is independent of the element’s processing code; it holds for push, pull,
and agnostic ports.

But what does it mean for a packet to “travel” from one port to another? This principle
will help you pick the right flow code for an element: Consider how an element’s flow matrix
would affect a simple router.

Take an input port, i, and output port, j, on some element M . To decide whether m[i, j]
should be true, imagine this simple configuration (or a similar configuration):

... -> RED -> [i] M [j] -> Queue -> ...;

Now, should the RED element include the Queue element in its queue length calculation?
The m[i, j] element should be true if and only if the answer is yes.

For example, consider ARPQuerier ’s second input port, which receives ARP responses.
ARPQuerier may, on receiving an ARP response, emit a held-over IP packet on its first
output. However, a RED element upstream of that second input port would probably
not include the downstream Queue in its queue length configuration. After all, the ARP
responses are effectively dropped; packets emitted onto the Queue originally came from
ARPQuerier ’s first input port. Therefore, m[1, 0] is false, and ARPQuerier ’s flow code
specifies that packets arriving on the second input port are not emitted on any output port.

The ARPResponder element provides a contrasting example. It has one input port,
which receives ARP queries, and one output port, which emits the corresponding ARP
responses. A RED element upstream of ARPResponder would probably want to include
a downstream Queue, since queries received by ARPResponder are effectively transmuted
into emitted responses. Thus, m[0, 0] is true, even though the packets ARPResponder emits
are completely different from the packets it receives.

If you find this confusing, don’t fret. It is perfectly fine to be conservative when assigning
flow codes. About 96% of the Click distribution’s elements use COMPLETE_FLOW.

5.6 add_handlers—Creating Handlers

After successfully configuring every element and assigning ports to push or pull, the
driver calls every element’s add_handlers method. This method should create any handlers
provided by the element. See Section 6.4 [Handlers], page 52, for more information on
handlers.

Method on Elementvirtual void add handlers ()
This method takes no arguments and returns no results. Its only side effect should be
to create the element’s class-specific handlers. Most add_handlers methods simply
call add_read_handler and add_write_handler one or more times (see Section 6.4.2
[Adding Handlers], page 53), and possibly add_task_handlers (see Section 8.6 [Task
Handlers], page 78).

The default implementation does nothing.

Chapter 5: Element Initialization 48

The driver also calls every element’s add_default_handlers method. This nonvirtual
method adds the default handlers that every element shares. See Section 6.4.3 [Default
Handlers], page 54, for more information.

Method on Elementvoid add default handlers (bool config writable)
Adds the default collection of handlers for the element. Most of these handlers are
read-only. The ‘config’ handler may be read/write, but only if config writable is
true and the can_live_reconfigure method also returns true (see Section 6.5.1
[can live reconfigure], page 58).

5.7 initialize—Element Initialization

The initialize method is called just before the router is placed on line. It performs
any final initialization, and provides the last chance to abort router installation with an
error.

Method on Elementvirtual int initialize (ErrorHandler *errh)
Any errors, warnings, or messages should be reported to errh. Messages should not
specify the element name; this information will be supplied externally.

This method should return zero if initialization succeeds, or a negative number if it
fails. Returning a negative number prevents the router from initializing.

The default initialize method simply returns zero.

An element’s initialize method may check whether its input or output ports are push
or pull, or query the router for information about its neighbors. It may not create or destroy
input or output ports.

If every element’s initialize method succeeds, then the router is installed, and
will remain installed until another router replaces it. Any errors that occur later than
initialize—during a push or pull method, perhaps—will not take the router off line.

Common tasks performed in initialize methods include:

• Initializing Tasks (see Section 8.1 [Task Initialization], page 74).

• Allocating memory.

• Opening files.

5.8 cleanup—Cleaning Up State

The cleanup method should clean up any state allocated by the initialization process.
For example, it should close any open files, free up memory, and unhook from network
devices. Click calls cleanup when it determines that an element’s state is no longer needed,
either because a router configuration is about to be removed or because the router configu-
ration failed to initialize properly. Click will call the cleanup method exactly once on every
element it creates.

Method on Elementvirtual void cleanup (CleanupStage stage)
Clean up state related to this element. The method should never report errors to any
source. The stage parameter is an enumeration indicating how far the element made
it through the initialization process. Its values are, in increasing order:

Chapter 5: Element Initialization 49

CLEANUP_NO_ROUTER

The element was never attached to a router.

CLEANUP_CONFIGURE_FAILED

The element’s configure method was called, but it failed.

CLEANUP_CONFIGURED

The element’s configure method was called and succeeded, but its
initialize method was not called (because some other element’s
configure method failed).

CLEANUP_INITIALIZE_FAILED

The element’s configure and initialize methods were called.
configure succeeded, but initialize failed.

CLEANUP_INITIALIZED

The element’s configure and initialize methods were called and suc-
ceeded, but its router was never installed (because some other element’s
initialize method failed).

CLEANUP_ROUTER_INITIALIZED

The element’s configure and initialize methods were called and suc-
ceeded, and the router of which it is a part was successfully installed.

CLEANUP_MANUAL

Never used by Click. Intended for use when element code calls cleanup

explicitly.

The default cleanup method does nothing.

cleanup serves some of the same functions as an element’s destructor, and it’s usually
called immediately before the element is destroyed. However, cleanup may be called long
before destruction. Elements that are part of an erroneous router are cleaned up, but kept
around for debugging purposes until another router is installed.

5.9 static_initialize and static_cleanup

Use the static_initialize and static_cleanup methods to set up and remove any
global state required by an element. Click calls each element’s static_initialize method
as the element code is loaded (before any elements are created), and calls its static_

cleanup method as the element code is unloaded (generally when the driver exits). Each
method is called exactly once. static_initialize is suitable for installing configuration
string parsing routines, for example.

Static Method on Elementvoid static initialize ()
The default implementation does nothing.

Static Method on Elementvoid static cleanup ()
The default implementation does nothing.

Chapter 5: Element Initialization 50

Care is required when inheriting from elements that have static_initialize and/or
static_cleanup methods. In particular, if an element Derived inherits from an element
Base that has a static_initialize method, then Derived must provide its own static_

initialize method, to ensure that Base::static_initialize doesn’t get called twice.
Generally Derived::static_initialize will do nothing. A similar statement holds for
static_cleanup. See the CheckIPHeader2 element source code for an example.

5.10 Initialization Phases

1. Determines how many ports are used on each element and calls their notify_ninputs
and notify_noutputs methods.

2. Calls each element’s configure_phase method, and uses the result to construct a
configuration order.

3. Calls each element’s configure method, passing in the relevant configuration string.
The elements are configured according to the configuration order.

4. Checks that each connection connects a valid input port to a valid output port. This
catches errors where a connection uses a port that does not exist.

5. Calls each element’s processing method to determine whether its ports are push, pull,
or agnostic.

6. For each element with agnostic ports, calls the corresponding flow_code method to
determine constraints linking agnostic input ports to agnostic output ports.

7. Runs the constraint-satisfaction algorithm that determines whether each agnostic port
is push or pull. This catches errors where a single agnostic port is used as both push
and pull.

8. Checks that every connection is between two push ports or two pull ports.

9. Checks that push output ports and pull input ports are connected exactly once.

10. Checks that no input or output port goes unused.

11. Calls every element’s add_handlers method.

12. Calls every element’s add_default_handlers method. The ‘config’ handler may be
read-write.

13. If there have been no errors up to this point, then calls each element’s initialize

method. The elements are initialized according to the configuration order. No
initialize methods are called if there were any errors in any previous phase.

14. If there were no errors, then router initialization has succeeded, and the router is placed
on line.

15. If there were errors, then router initialization has failed.

a. Removes all handlers, then calls every element’s add_default_handlers again to
make information about the erroneous configuration available for debugging. The
‘config’ handler is always read-only.

b. Calls the uninitialize method on each element whose initialize method re-
turned successfully.

Chapter 6: Element Runtime 51

6 Element Runtime

6.1 Moving Packets

Two virtual functions on Element, push and pull, provide Click’s means are the main
methods for packet transfer.

6.1.1 push

Method on Elementvirtual void push (int port, Packet *p)
Called when an upstream element pushes the packet p onto this element’s input port
port. This element is expected to process the packet however it likes.

6.1.2 pull

Method on Elementvirtual Packet * pull (int port)
Called when a downstream element makes a pull request of this element’s output port
port. This element is expected to process the request however it likes and to return
a packet.

6.1.3 Transferring Packets

Method on Element::Portvoid push (Packet *p) const

Method on Element::PortPacket * pull () const

6.1.4 simple_action

Method on ElementPacket * simple action (Packet *p)

6.2 Handling Packets

Every Packet object should be single-threaded through Click: the same Packet pointer
should never be in use in two different places. In particular, an element should not
use a Packet after passing it downstream to the rest of the configuration (by calling
output().push, for example).

This, for example, is the wrong way to write a Tee with two outputs.

void
BadTee::push(int, Packet *p)
{

output(0).push(p);
output(1).push(p);

}

The same packet pointer, p, has been pushed to two different outputs. This is always illegal;
the rest of the configuration may have modified or even freed the packet before returning
control to BadTee. The correct definition uses the clone method:

Chapter 6: Element Runtime 52

void
GoodTee::push(int, Packet *p)
{

output(0).push(p->clone());
output(1).push(p);

}

Every push or pull method must account for every packet it receives by freeing it,
emitting it on some output, or perhaps explicitly storing it for later. This push method,
for example, contains a memory leak:

void
Leaky::push(int, Packet *p)
{

const click_ip *iph = p->ip_header();
// . . . more processing . . .
_counter++;
return; // XXX Oops!
// Must push the packet on, store it, or kill it before returning.

}

6.3 Running Tasks

6.4 Handlers

Handlers are access points through which users can interact with elements in a running
Click router, or with the router as a whole. Read and write handlers behave like files in a
file system, while LLRPCs provide a remote procedure call interface.

6.4.1 Read and Write Handler Overview

Read and write handlers appear to the user like files in a file system, or alternatively,
like a limited RPC mechanism that uses ASCII strings for data transfer. To the element
programmer, a read handler is simply a function that takes an element and returns a String;
a write handler is a function that takes an element and a String and returns an error code.

Function TypeString (*ReadHandler) (Element *element, void *thunk)
Read handler functions have this type. When the user accesses a read handler on
an element, Click calls some ReadHandler function and passes the element as an
argument. The thunk argument contains callback data specified when the handler
was added (see Section 6.4.2 [Adding Handlers], page 53). The function’s String
return value is passed back to the user.

Function Typeint (*WriteHandler) (const String &data, Element *element,
void *thunk, ErrorHandler *errh)

Write handler functions have this type. When the user accesses some element write
handler by passing in a string, Click calls some WriteHandler function and passes the
data and the relevant element as arguments. The thunk argument contains callback

Chapter 6: Element Runtime 53

data specified when the handler was added (see Section 6.4.2 [Adding Handlers],
page 53). The return value is an error code: zero when there are no errors, and the
negative of some errno value when there is an error. More detailed information about
any errors should be reported to the errh argument.

Each handler has an ASCII name. Handler names must be unique within each element;
for example, there can be at most one ‘x’ read handler in a given element. A given name can
be shared by a read handler and a write handler, however. Such a handler pair is colloquially
called a “read/write handler”, although its two components need not have anything to do
with one another.

There is currently no way to pass data to a read handler or return data from a write
handler. Use LLRPCs if you need a more RPC-like read-write interface.

Note that read and write handler functions are regular functions, not virtual functions.
Often, therefore, handler functions are defined as private static member functions in the
relevant element class.

Read and write handlers need not use ASCII-formatted data. Most existing handlers do
format their data in ASCII, however, and use cp_uncomment to ignore leading and trailing
whitespace and comments (see Section 7.2 [Quoting and Unquoting], page 60). You may
want to do the same for consistency’s sake.

Be careful when writing handlers that modify element state, or read state that packet
processing can modify. On an SMP machine, a handler may be called on one processor
while packets are passing through the router on another processor. Furthermore, multiple
read handlers and safe LLRPCs (see Section 6.4.5 [LLRPC Overview], page 57) may be
active simultaneously on different processors. Write handlers are serialized with respect
to other handlers and LLRPCs (but not packet processing). That is, no other handler or
LLRPC will proceed while a write handler is active.

6.4.2 Adding Handlers

Use Element’s add_read_handler and add_write_handler methods to add handlers
for an element. You will generally call these methods only from within your element’s add_
handlers method (see Section 5.6 [add handlers], page 47), although nothing prevents you
from adding handlers at any time.

Method on Elementvoid add read handler (const String &name,
ReadHandler func, void *thunk)

Adds a read handler named name for this element. When the handler is accessed,
func will be called with this and thunk as parameters.

Method on Elementvoid add write handler (const String &name,
WriteHandler func, void *thunk)

Adds a write handler named name for this element. When the handler is accessed,
func will be called with the relevant data, this, thunk, and an ErrorHandler as
parameters.

To create a read/write handler, call add_read_handler and add_write_handler and
supply the same handler name.

Chapter 6: Element Runtime 54

These methods simply forward their requests to static add_read_handler and add_

write_handler methods on the Router class. Call those methods directly to add handlers
to other elements, or to add global handlers.

Static Method on Routervoid add read handler (const Element *element,
const String &name, ReadHandler func, void *thunk)

Static Method on Routervoid add write handler (const Element *element,
const String &name, WriteHandler func, void *thunk)

Adds a read or write handler for element, or a global read or write handler if element
is null. The handler is named name.

The change_handler_flags method lets you change a handler’s flags word (see Sec-
tion 6.4.4.1 [Handler Objects], page 55).

Static Method on Routervoid change handler flags (Element *element,
const String &name, uint32_t clear flags, uint32_t set flags)

Changes the flags for element’s name handler, or the global name handler if element
is null. The flags are changed by first clearing the bits set in clear flags, then setting
the bits set in set flags. This method fails and returns −1 when the specified handler
does not exist; otherwise, it returns 0.

6.4.3 Default Read and Write Handlers

Every element automatically provides five handlers, ‘class’, ‘name’, ‘config’, ‘ports’, and
‘handlers’. There is no need to add these handlers yourself. The default handlers behave
as follows:

‘class’ Returns the element’s class name, as returned by class_name(), followed by a
newline. Example result: "ARPQuerier\n".

‘name’ Returns the element’s name, as returned by id(), followed by a newline. Ex-
ample result: "arpq_0\n".

‘config’ Returns the element’s configuration string. If the configuration string does
not end in newline, the hander appends a newline itself. Example result:
"18.26.7.1, 00:00:C0:4F:71:EF\n".

If can_live_reconfigure returns true, ‘config’ is also a write handler, and
writing to it reconfigures the element. See Section 6.5 [Live Reconfiguration],
page 58.

‘ports’ Returns a multi-line string describing the element’s ports and what they are
connected to. The string has the form

M input[s]
. . . M input port descriptions, one per line . . .
N output[s]
. . . N output port descriptions, one per line . . .

Each port description lists the port’s processing type, a dash, and then a
comma-separated list of all the ports to which this port is connected. The
processing type is either ‘push’ or ‘pull’; formerly agnostic ports are indicated
by a trailing tilde (‘push~’ or ‘pull~’). Example result:

Chapter 6: Element Runtime 55

1 input
push~ - Strip@2 [0]
2 outputs
push~ - [0] GetIPAddress@4
push - [0] Print@7

If Click was compiled with statistics collection enabled, the dash on each line
is replaced by a packet count.

‘handlers’ Returns a string listing the element’s visible handlers, one per line. Each line
contains the handler name, a tab, and then either ‘r’, ‘w’, or ‘rw’, depending on
whether the handler is read-only, write-only, or read/write. Example result for
an InfiniteSource element, which has many handlers:

scheduled r
tickets r
reset w
count r
active rw
burstsize rw
limit rw
data rw
handlers r
ports r
config rw
name r
class r

6.4.4 Accessing Handlers Internally

Element handlers are stored in the relevant Router as objects of type Router::Handler.
(This design allows handler objects to be shared between elements when possible.) Handlers
are often referred to by index; indexes between 0 and Router::FIRST_GLOBAL_HANDLER −
1 refer to element handlers, while indexes above Router::FIRST_GLOBAL_HANDLER refer to
global handlers. Indexes less than 0 are used for error returns, such as nonexistent handlers.
Router methods translate between handler indexes and Router::Handler objects, and find
handlers or handler indexes given handler names.

6.4.4.1 The Router::Handler Type

The Router::Handler type allows you to check a handler’s properties and call the
handler. All of its methods are const; you must go through Router to change a handler’s
properties. Router::Handler objects do not contain element references, since they are
shared among elements. That means you can’t easily find the element (if any) to which a
particular Router::Handler is attached.

Method on Router::Handlerconst String & name () const

Returns the handler’s name.

Chapter 6: Element Runtime 56

Method on Router::Handleruint32_t flags () const

Returns the handler’s flags as an integer. The lower bits of the flags word are
reserved for the system, and four bits are reserved for drivers, but the upper
bits (at least 16) are left uninterpreted, and may be used by elements. The first
user flag bit is called Router::Handler::USER_FLAG_0; its position in the word
equals Router::Handler::USER_FLAG_SHIFT. To change a handler’s flags, use the
Router::change_handler_flags method (see [Changing Handler Flags], page 54).

Method on Router::Handlerbool readable () const

Returns true iff this handler is readable.

Method on Router::Handlerbool read visible () const

Returns true iff this handler is readable, and that read handler should be exter-
nally visible. Drivers and the ControlSocket element use read_visible rather than
readable when deciding whether to tell the user that a read handler exists. Inter-
element communication within the router, however, may use readable rather than
read_visible.

Method on Router::Handlerbool writable () const

Method on Router::Handlerbool write visible () const

The analogous methods for write handlers.

Method on Router::Handlerbool visible () const

Equivalent to read_visible() || write_visible().

Method on Router::HandlerString unparse name (Element *element) const

Returns the handler’s name, including its attached element’s name if element is non-
null. For example, calling unparse_name on element ‘e’’s ‘foo’ handler would return
‘e.foo’, while calling it on a global ‘bar’ handler would return ‘bar’.

Static Method on Router::HandlerString unparse name (Element *element,
const String &name)

Returns a string representing element’s hypothetical name handler, or the global
name handler if element is null.

Method on Router::HandlerString call read (Element *element) const

Calls this read handler on element and returns the result. Do not use this method
unless you know the handler is readable().

Method on Router::Handlerint call write (const String &data,
Element *element, ErrorHandler *errh) const

Calls this write handler on element, passing it data and errh, and returns the result.
Do not use this method unless you know the handler is writable().

Chapter 6: Element Runtime 57

6.4.4.2 Handlers By Name or Index

These Router methods locate handlers by name, returning either a pointer to a handler
object or a handler index. The methods are static to allow access to global handlers outside
the context of a running router.

Static Method on Routerconst Router::Handler * handler
(const Element *element, const String &name)

Returns a pointer to the handler object for element’s handler named name, or null if
no such handler exists. Element may be null, in which case the method looks for a
global handler named name.

Caution: Handler pointers returned by Router::handler and similar meth-
ods should be treated as transient, since they may become invalid when new
handlers are added.

Static Method on Routerint hindex (const Element *element,
const String &name)

Like Router::handler, above, but returns an integer handler index for the named
handler, or a negative number if no such handler exists. All valid handler indexes are
nonnegative.

Static Method on Routerconst Router::Handler * handler
(const Router *router, int hindex)

Returns router’s handler object corresponding to hindex, or a null pointer if hindex
is invalid with respect to router. There are three possibilities: (1) hindex coresponds
to a valid global handler, which is returned. In this case, router need not be valid.
(2) hindex corresponds to a valid local handler in class router, which is returned. (3)
Otherwise, a null pointer is returned.

Static Method on Routerconst Router::Handler * handler
(const Element *element, int hindex)

Convenience function equivalent to handler(element->router(), hindex). Note
that hindex need not refer to one of element’s handlers.

Method on Routerconst Router::Handler * handler (int hindex) const
Convenience function equivalent to handler(this, hindex).

Finally, the element_hindexes static method returns all the handler indices that apply
to a given element.

Static Method on Routervoid element hindexes (const Element *element,
Vector<int> &results)

Appends to results all the handler indexes for element’s handlers, or all global handlers
if element is null.

6.4.5 LLRPC Overview

Chapter 6: Element Runtime 58

6.5 Live Reconfiguration

6.5.1 can live reconfigure

Chapter 7: Configuration Strings 59

7 Configuration Strings

7.1 Structure

Configuration strings consist of a list of comma-separated arguments. For example, this
configuration string has three arguments, ‘a’, ‘b’, and ‘c’:

a, b , c

Leading and trailing whitespace is trimmed from each argument.

Configuration strings can contain two kinds of comments and three kinds of quoted
strings. Comments let you document a configuration string; they behave like spaces. With
quoted strings, you can protect special characters like whitespace, commas, and comment-
starting sequences from interpretation.

‘//’ comments
Begins with two adjacent slashes, ‘//’, and continues up to and including the
next end-of-line (‘\n’, ‘\r’, or ‘\r\n’). Comment starters (‘//’ and ‘/*’) and
the quote sequences (‘’’, ‘"’, and ‘\<’) have no special meaning inside ‘//’
comments.

‘/* ... */’ comments
Begins with slash-star, ‘/*’, and continues up to and including the next star-
slash, ‘*/’. Comment starters (‘/*’ and ‘//’) and the quote sequences (‘’’, ‘"’,
and ‘\<’) have no special meaning inside ‘/*’ comments.

Single-quoted strings ‘’ ... ’’
Begins with a single-quote character ‘’’ and continues up to the next single
quote. Comments, double quotes, and backslashes have no special meaning
inside single quotes. There is no way to include a single quote in a single-
quoted string.

Double-quoted strings ‘" ... "’
Begins with a double-quote character ‘"’ and continues up to the next unescaped
double quote. Backslash ‘\’ acts as an escape character inside double quotes,
as in C. Click’s escape sequences are described below. Comments and single
quotes have no special meaning inside double quotes. ‘\<’ retains its usual
meaning, however.

Hex strings ‘\< ... >’
The ‘\<’ sequence begins a string of hexadecimal digits terminated by ‘>’. Each
pair of digits expands to the corresponding character value. For example,
‘\<48454c4c4F>’ expands to ‘HELLO’. Whitespace and comments (either ‘//’ or
‘/*’ style) may be arbitrarily interleaved with the hex digits; any ‘>’ characters
inside comments are ignored. Characters other than whitespace, hex digits,
comments, and ‘>’ should not appear inside a hex string.

Hex strings may be placed within double-quoted strings.

Chapter 7: Configuration Strings 60

Escape Sequences

Most of Click’s escape sequences are borrowed from C, and behave the same way. The
‘\< ... >’ escape sequence is new, however.

‘\〈END-OF-LINE〉’
A backslash followed by an end-of-line sequence—‘\n’, ‘\r’, or ‘\r\n’—is re-
moved from the string. This string

"a\
b"

is equivalent to "ab".

‘\a’, ‘\b’, ‘\t’, ‘\n’, ‘\v’, ‘\f’, ‘\r’
These escape sequences produce the characters with decimal ASCII values 7, 8,
9, 10, 11, 12, and 13, respectively.

‘\\’, ‘\"’, ‘\’’, ‘\$’
These escape sequences expand to a literal backslash, double quote, single quote,
and dollar sign, respectively.

‘\〈1 TO 3 OCTAL DIGITS〉’
A backslash followed by 1 to 3 octal digits (‘0’ . . . ‘7’) expands to the character
with that octal value. For example, ‘\046’ expands to ‘&’.

‘\x〈HEX DIGITS〉’
‘\x’ followed by an arbitrary number of hexadecimal digits expands to the single
character whose value equals the lower 8 bits of that number. Thus, ‘\x45’ and
‘\x94839E89DB00ACF45’ both expand to ‘E’.

‘\< 〈HEX DIGITS〉 >’
‘\<’ introduces a hex string, as described above.

Any other escape sequence ‘\〈CHAR〉’ is an error. Currently, such sequences expand to
‘〈CHAR〉’, but their semantics may eventually change.

7.2 Quoting and Unquoting

These functions interpret quote sequences and comments in configuration strings. cp_

uncomment removes comments and leading and trailing whitespace, but does not expand
quote sequences. cp_unquote both removes comments and expands quote sequences. Fi-
nally, cp_quote protects special characters, such as whitespace and commas, within double
quotes.

FunctionString cp uncomment (const String &str)
Replaces any comments in str by single spaces, then removes any leading and trailing
whitespace and returns the result.

FunctionString cp unquote (const String &str)
Replaces any comments in str by single spaces, then removes any leading and trailing
whitespace. Finally, replaces every quoted string by its expansion and returns the
result.

Chapter 7: Configuration Strings 61

FunctionString cp quote (const String &str, bool allow newlines = false)
Returns a quoted version of str. Any whitespace, commas, comments, quote se-
quences, and non-ASCII characters in str are protected within double quotes. If
allow newlines is true, then the result may contain newline characters (within double
quotes); otherwise, any newline characters in str are replaced by ‘\n’ sequences. The
returned result is never empty (unless Click has run out of memory). If str is the
empty string, cp_quote will return ‘""’ (a string containing two double quotes).

For example:

cp_uncomment(“ /* blah */ "quote"/*xx*/\<2 c>”) ⇒ “"quote" \<2 c>”
cp_unquote(“ /* blah */ "quote"/*xx*/\<2 c>”) ⇒ “quote ,”
cp_quote(“quote ,”) ⇒ “"quote ,"”

7.3 Splitting and Combining

Functionvoid cp argvec (const String &str, Vector<String> &conf)
Splits str into arguments by breaking it at every comma not part of a quote or
comment. Comments and leading and trailing whitespace are removed from each
argument, as by cp_uncomment, and the results are pushed, in order, onto the vector
conf. If str contains only whitespace and comments, nothing is pushed onto conf.

Functionvoid cp spacevec (const String &str, Vector<String> &conf)
Splits str into arguments by breaking it at every sequence of whitespace characters
and/or comments. Leading and trailing whitespace is removed from each argument,
as by cp_uncomment, and the results are pushed, in order, onto the vector conf. If str
contains only whitespace and comments, nothing is pushed onto conf.

For example:

cp_argvec(“ x/* ,,, */ab" c", \<de> , ’,’”, vec)
⇒ 3 arguments: “x ab" c"” “\<de>” “’,’”

cp_argvec(“ /* blah, blah, blah, blah */ ”, vec)
⇒ 0 arguments

cp_argvec(“ /* blah, blah, blah, blah */, ”, vec)
⇒ 2 empty arguments: “” “”

cp_spacevec(“ x/* ,,, */yz" w" \<d e> ""”, vec)
⇒ 4 arguments: “x” “yz" w"” “\<d e>” “""”

cp_spacevec(“ /* blah, blah, blah, blah */ ”, vec)
⇒ 0 arguments

cp_spacevec(“ /* blah, blah, blah, blah */, ”, vec)
⇒ 1 argument: “,”

Since the const Vector<String> &conf arguments passed to elements’ configuremeth-
ods (see Section 5.3 [configure], page 44) have been processed by cp_argvec, there is no
need to process them with cp_uncomment.

The cp_unargvec and cp_unspacevec functions take a vector of arguments and combine
them into a single string. These functions do not protect their arguments by quoting; use
cp_quote explicitly when necessary (see Section 7.2 [Quoting and Unquoting], page 60). If

Chapter 7: Configuration Strings 62

the arguments are properly quoted, then calling cp_argvec(cp_unargvec(conf), conf2)
or cp_spacevec(cp_unspacevec(conf), conf2) will produce a new vector of arguments
equal to the original.

FunctionString cp unargvec (const Vector<String> &conf)
Returns a string consisting of the elements of conf separated by ‘, ’.

FunctionString cp unspacevec (const Vector<String> &conf)
Returns a string consisting of the elements of conf separated by ‘ ’.

For example:

cp_unargvec([“x ab" c"”, “\<de>”, “’,’”])
⇒ “x ab" c", \<de>, ’,’”

cp_unargvec([“whatever”])
⇒ “whatever”

cp_unargvec([])
⇒ “”

cp_unargvec([“,”, “,”])
(Probably a mistake: caller should have quoted the arguments!)
⇒ “,, ,”

cp_unspacevec([“xy" z"”, “\<de>”, “’,’”])
⇒ “xy" z" \<de> ’,’”

7.4 Parsing Functions

Click’s parsing functions parse strings into various kinds of data, such as integers, fixed-
point real numbers, and IP addresses. Parsing functions follow some consistent conventions:

• Their first argument, const String &str, contains the string to be parsed.

• At least one additional argument points to a location where any parsed result should
be stored. These result arguments have pointer type.

• Their return type is bool.

• They return true if and only if parsing succeeds.

• The values pointed to by the result arguments are modified only if parsing succeeds.

• Most parsing functions expect to parse the entire supplied string. Any extraneous
characters, such as trailing whitespace, cause parsing to fail.

• Parsing functions never report errors to any source; they simply return false when
parsing fails.

7.4.1 Strings and Words

These functions parse strings from their input strings. The resulting strings may be
arbitrary (cp_string) or constrained (cp_word, cp_keyword). As noted above (see Sec-
tion 7.4 [Parsing Functions], page 62), the functions have bool return type; they return
true if parsing was successful.

Chapter 7: Configuration Strings 63

Parsing Functionbool cp string (const String &str, String *result,
String *rest = 0)

Parses a string from the beginning of str and stores the result in *result. The parsed
string may contain single and double quotes and hex strings (“\< ... >”), which are
processed as by cp_unquote (see Section 7.2 [Quoting and Unquoting], page 60).

If the rest argument is null and str contains any unquoted whitespace, then parsing
will fail. If rest is not null, then parsing stops at the first unquoted whitespace
character, and any leftover portion of str is stored in *rest.

For example:

cp_string(“"a b c d"”, result) ⇒ true
*result = “a b c d”

cp_string(“”, result) ⇒ false
cp_string(“""”, result) ⇒ true

*result = “”
cp_string(“ "a b c d"”, result) ⇒ false

(str began with an unquoted space)
cp_string(“"a b c d" e”, result) ⇒ false

(str contained an unquoted space)
cp_string(“"a b c d" e”, result, rest) ⇒ true

*result = “a b c d”, *rest = “ e”

Parsing Functionbool cp word (const String &str, String *result,
String *rest = 0)

Parses a word from the beginning of str and stores the result in *result. A word is
a string that does not contain whitespace, control characters, non-ASCII characters
(with values 127 or higher), or special characters (‘’’, ‘"’, ‘\’, or ‘,’). str may contain
single and double quotes and hex strings (“\< ... >”), which are processed as by
cp_unquote (see Section 7.2 [Quoting and Unquoting], page 60). The unquoted re-
sult must not contain quote marks, whitespace, or other special characters, however.
Returns true if and only if str contained a valid word.

If the rest argument is null and str contains any unquoted whitespace, then parsing
will fail. If rest is not null, then parsing stops at the first unquoted whitespace
character, and any leftover portion of str is stored in *rest.

For example:

cp_word(“word”, result) ⇒ true
*result = “word”

cp_word(“"wor"\<64>”, result) ⇒ true
*result = “word”

cp_word(“"wor d"”, result) ⇒ false
(processed string contained a space)

Parsing Functionbool cp keyword (const String &str, String *result,
String *rest = 0)

Parses a keyword from the beginning of str and stores the result in *result. A keyword
is a string consisting of one or more letters, numbers, underscores (‘_’), periods (‘.’),
and colons (‘:’). Keywords may not contain quoted substrings—‘’’, ‘"’, and ‘\<’ are
not allowed. Returns true if and only if str contained a valid keyword.

Chapter 7: Configuration Strings 64

If the rest argument is null and str contains any unquoted whitespace, then parsing
will fail. If rest is not null, then parsing stops at the first unquoted whitespace
character, and any leftover portion of str is stored in *rest.

For example:

cp_keyword(“word”, result) ⇒ true
*result = “word”

cp_keyword(“"wor"\<64>”, result) ⇒ false
(quotes not allowed in keywords)

To summarize:

• cp_string and cp_word allow quoted substrings; cp_keyword does not.

• cp_string results may contain arbitrary characters; cp_word and cp_keyword restrict
the characters allowed in their results.

• If cp_keyword(str, result) is true, then cp_word(str, result) is true.

• If cp_word(str, result) is true, then cp_string(str, result) is true.

7.4.2 Booleans

The cp_bool function parses a string into a Boolean value.

Parsing Functionbool cp bool (const String &str, bool *result)
Parses str into a Boolean value and stores the result in *result. Allowable Boolean
strings are as follows:

‘0’, ‘false’, ‘no’
*result becomes false.

‘1’, ‘true’, ‘yes’
*result becomes true.

The words must be all lower case.

7.4.3 Integers

cp_integer and cp_unsigned parse strings into int and unsigned int values, respec-
tively.

Each function comes in two variants, one with a base parameter and one without. If
base is 0 or unspecified, then the function examines the string to determine the relevant
base. Strings beginning with ‘0x’ or ‘0X’ (after the optional sign) use base 16; other strings
beginning with ‘0’ use base 8; and all other strings use base 10. Nonzero bases must be at
least 2 and no more than 36.

The functions accept the same strings as C’s strtol function, except that strtol will
accept leading whitespace and trailing characters that are not part of the parsed integer.
The string should contain, in order:

• An optional ‘+’ or ‘-’ sign. (The cp_unsigned functions do not accept a minus sign.)

• An optional ‘0x’ or ‘0X’, if the base argument is 0 or 16.

• One or more alphanumeric digits. The maximum allowed digit is specified by base.

Chapter 7: Configuration Strings 65

If a string contains a valid number too large (or small) to represent, the parsing function
sets cp_errno to CPE_OVERFLOW, stores the largest (or smallest) allowable number in result,
and returns true. If a function succeeds without overflow, cp_errno is set to CPE_OK.

Parsing Functionbool cp integer (const String &str, int *result)
Parsing Functionbool cp integer (const String &str, int base, int *result)

Parses str into a signed integer in base base and stores the result in *result. Detects
overflow on numbers greater than 2147483647 or less than −2147483648.

Parsing Functionbool cp unsigned (const String &str, unsigned *result)
Parsing Functionbool cp unsigned (const String &str, int base,

unsigned *result)
Parses str into an unsigned integer in base base and stores the result in *result.
Detects overflow on numbers greater than 4294967295.

For example:

cp_integer(‘-0x8000’, result) ⇒ true
*result = −32768, cp_errno = CPE_OK

cp_integer(‘-0x8000 ’, result) ⇒ false
(trailing whitespace not allowed)

cp_unsigned(‘3333333333333333’, 4, result) ⇒ true
*result = 4294967295, cp_errno = CPE_OK

cp_unsigned(‘33333333333333333’, 4, result) ⇒ true
*result = 4294967295, cp_errno = CPE_OVERFLOW

7.4.4 Real Numbers

Several functions parse real numbers into fixed-point integers. (Some drivers, such as
the Linux kernel driver, can’t use floating point arithmetic, so doubles are not allowed.)

Each function takes an integer argument that determines how many digits of fraction
the result should have. Since the result is a single fixed-point number, the more digits of
fraction in the result, the fewer digits are available for the integer part.

You may request binary or decimal digits of fraction. The real10 function variants
use decimal digits, while the real2 variants use binary digits: bits. For example,
cp_real10(‘1’, 2, result), which parses the string ‘1’ with 2 decimal digits of fraction,
yields the number 100 (10ˆ2). The similar call to a binary-digit function, cp_real2(‘1’,
2, result), yields 4 (2ˆ2). Parsing ‘0.5’ with the same functions yields 50 and 2,
respectively.

A real number string should contain, in order:

• An optional ‘+’ or ‘-’ sign. (The unsigned variants do not accept minus signs.)

• An optional sequence of decimal digits representing the integer part.

• An optional fraction point ‘.’.

• An optional sequence of decimal digits representing the fraction part.

• An optional exponent—an ‘E’ or ‘e’ character followed by a signed decimal integer.

Chapter 7: Configuration Strings 66

The string must contain at least one digit in either the integer part or the fraction part.

All the parsing functions round to the nearest relevant number. For example,
cp_real10(‘0.59’, 1, result) stores 6 in result, since 0.59 rounded to one digit of fraction
is 0.6.

If a string contains a real number too large in magnitude for the specified format, the
parsing function will set cp_errno to CPE_OVERFLOW, store the largest representable number
in result, and return true. For example, the largest number representable as an unsigned
integer with 16 bits of fraction is 65535.99998, which has the bit pattern 0xFFFFFFFF.
Therefore, cp_unsigned_real2(‘65536’, 16, result) stores 0xFFFFFFFF in result and sets
cp_errno to CPE_OVERFLOW. If there was no overflow or other error, cp_errno is set to
CPE_OK.

Parsing Functionbool cp unsigned real10 (const String &str,
int frac digits, unsigned *result)

Parses str into an unsigned real number, and stores the result in result as an unsigned
integer with frac digits decimal digits of fraction.

Parsing Functionbool cp real10 (const String &str, int frac digits,
int *result)

Parses str into a unsigned real number, and stores the result in result as an integer
with frac digits decimal digits of fraction.

Parsing Functionbool cp unsigned real2 (const String &str, int frac bits,
unsigned *result)

Parses str into an unsigned real number, and stores the result in result as an unsigned
integer with frac bits bits of fraction.

Parsing Functionbool cp real2 (const String &str, int frac bits, int *result)
Parses str into a real number, and stores the result in result as an integer with frac bits
bits of fraction.

The fixed-point real parsing functions are built on a lower-level variant that returns the
integer and fraction parts in two different unsigned ints.

Parsing Functionbool cp unsigned real10 (const String &str,
int frac digits, unsigned *int result, unsigned *frac result)

Parses str into an unsigned real number and stores the result in int result and
frac result. int result holds the integral part of the resulting real, while frac result
holds its fractional part as a fixed-point number with frac digits decimal digits of
fraction. frac result is always less than 10ˆfrac digits.

For example:

cp_unsigned_real10(‘10.952’, 3, int result, frac result) ⇒ true
*int result = 10, *frac result = 952

cp_unsigned_real10(‘10.9526’, 3, int result, frac result) ⇒ true
*int result = 10, *frac result = 953
(note rounding)

cp_unsigned_real10(‘10.9996’, 3, int result, frac result) ⇒ true
*int result = 11, *frac result = 0

Chapter 7: Configuration Strings 67

7.4.5 IP Addresses

The cp_ip_address functions parse strings into IP addresses. Related cp_ip_prefix

and cp_ip_address_set functions parse strings into IP address/netmask pairs and sets of
IP addresses, respectively.

Parsable IP addresses are simply dotted quads like ‘18.26.4.44’. IP prefixes may
be specified using CIDR notation, such as ‘18.26.4.44/16’; as explicit address/netmask
pairs, such as ‘18.26.4.44/255.255.0.0’; or, optionally, as bare IP addresses, such as
‘18.26.4.44’ (which means ‘18.26.4.44/255.255.255.255’).

Besides these conventional forms, the cp_ip functions understand user-defined shorthand
names for IP addresses and prefixes. Shorthand names are router-specific; users define them
with AddressInfo elements. Furthermore, a name’s meaning is dependent on its context: an
AddressInfo inside a compound element defines shorthand names local to that compound
element. The cp_ip functions, then, take optional Element *context arguments to specify
any router and compound-element context. If a cp_ip function’s context argument is null,
it will parse only the conventional IP address forms described above.

Parsing Functionbool cp ip address (const String &str,
unsigned char *result, Element *context = 0)

Parsing Functionbool cp ip address (const String &str, IPAddress *result,
Element *context = 0)

Parses str into an IP address and stores the result in *result. context supplies any
element context.

Parsing Functionbool cp ip prefix (const String &str,
unsigned char *result addr, unsigned char *result mask,
Element *context = 0)

Parsing Functionbool cp ip prefix (const String &str,
IPAddress *result addr, IPAddress *result mask, Element *context = 0)

Parses str into an IP address/netmask pair and stores the resulting address in *re-
sult addr, and the resulting netmask in *result mask. The resulting address is not
pre-masked by the resulting mask. For example, cp_ip_prefix(‘18.26.4.44/16’,
result addr, result mask) stores 18.26.4.44 in result addr, not 18.26.0.0. Bare ad-
dresses, such as ‘18.26.4.44’, are never allowed.

Parsing Functionbool cp ip prefix (const String &str,
unsigned char *result addr, unsigned char *result mask,
bool allow bare addr, Element *context = 0)

Parsing Functionbool cp ip prefix (const String &str,
IPAddress *result addr, IPAddress *result mask, bool allow bare addr,
Element *context = 0)

Parses str into an IP address/netmask pair and stores the resulting address in *re-
sult addr and netmask in *result mask. Bare addresses, such as ‘18.26.4.44’, are
allowed if and only if allow bare addr is true. The netmask corresponding to a bare
address is 255.255.255.255.

Chapter 7: Configuration Strings 68

Finally, the cp_ip_address_list function parses a whitespace-separated list of IP ad-
dresses into to an IPAddressList object.

Parsing Functionbool cp ip address list (const String &str,
IPAddressList *result, Element *context = 0)

Parses str into a list of IP addresses and stores the result in *result. str must be a
whitespace-separated list of IP addresses, which can take any of the forms accepted
by cp_ip_address.

7.4.6 IPv6 Addresses

The cp_ip6_address functions parse strings into IPv6 addresses. Related cp_ip6_

prefix functions parse strings into IPv6 address/netmask pairs.

Parsable IPv6 addresses and prefixes take any of the forms described in RFC 2373,
IP Version 6 Addressing Architecture. A nonabbreviated address consists of eight
colon-separated 16-bit hexadecimal numbers, as in ‘1080:0:0:0:8:800:200C:417A’.
Strings of zero bits may be abbreviated with two colons, as in ‘1080::8:800:200C:417A’,
and an address may end in an embedded IPv4 address, as in ‘::13.1.68.3’ and
‘::FFFF:129.144.52.38’. IPv6 prefixes are written in ‘address/prefixlen’ form, like
‘12AB:0:0:CD30::/60’. Click also supports ‘address/netmask’ syntax, where netmask
is an IPv6 address. netmask must correspond to some contiguous prefix, however:
‘12AB:0:0:CD30::/60’ and ‘12AB:0:0:CD30::/FFFF:FFFF:FFFF:FFF0::’ are equivalent,
but ‘12AB:0:0:CD30::/FFFF::1’ is illegal.

Analogously to the cp_ip functions (see Section 7.4.5 [Parsing IP Addresses], page 67),
the cp_ip6 functions understand AddressInfo’s shorthand names for IPv6 addresses, and
take optional Element *context arguments to specify any router and compound-element
context.

Parsing Functionbool cp ip6 address (const String &str,
unsigned char *result, Element *context = 0)

Parsing Functionbool cp ip6 address (const String &str,
IP6Address *result, Element *context = 0)

Parses str into an IPv6 address and stores the result in *result. context supplies any
element context.

Parsing Functionbool cp ip6 prefix (const String &str,
unsigned char *result addr, int *result prefix len, bool allow bare addr,
Element *context = 0)

Parsing Functionbool cp ip6 prefix (const String &str,
IP6Address *result addr, int *result prefix len, bool allow bare addr,
Element *context = 0)

Parse str into an IPv6 address/prefix length pair and stores the resulting address in
*result addr, and the resulting prefix length in *result prefix len. Bare addresses,
such as ‘1080::8:800:200C:417A’, are allowed if and only if allow bare addr is true.
The prefix length corresponding to a bare address is 128.

Chapter 7: Configuration Strings 69

Parsing Functionbool cp ip6 prefix (const String &str,
unsigned char *result addr, unsigned char *result mask,
bool allow bare addr, Element *context = 0)

Parsing Functionbool cp ip6 prefix (const String &str,
IP6Address *result addr, IP6Address *result mask, bool allow bare addr,
Element *context = 0)

Parse str into an IPv6 address/prefix length pair and stores the resulting address in
*result addr, and the netmask corresponding to the resulting prefix length in *re-
sult mask. Bare addresses are allowed if and only if allow bare addr is true.

7.4.7 Ethernet Addresses

The cp_ethernet_address functions parse strings into Ethernet addresses. A parsable
Ethernet address consists of six colon-separated 8-bit hexadecimal numbers, as in
‘0:2:B3:06:36:EE’.

Analogously to the cp_ip functions (see Section 7.4.5 [Parsing IP Addresses], page 67),
the cp_ethernet_address functions understand AddressInfo’s shorthand names for Eth-
ernet addresses, and take optional Element *context arguments to specify any router and
compound-element context.

Parsing Functionbool cp ethernet address (const String &str,
unsigned char *result, Element *context = 0)

Parsing Functionbool cp ethernet address (const String &str,
EtherAddress *result, Element *context = 0)

Parses str into an Ethernet address and stores the result in *result. context supplies
any element context.

7.4.8 Elements

cp_element parses an element name into a pointer to an element in some router con-
figuration. It differs from other parsing functions in two important ways. First, it returns
its result, or a null pointer on error; parsing functions store their results in some pointer.
Second, it reports errors to the supplied ErrorHandler.

The cp_element function follows lexical scoping rules when called from a compound
element: it will check for components of that compound element first. For instance, say
you’ve called cp_element on the string ‘e’. Normally, this would check the router for an
element named, simply, ‘e’. However, if called within a compound element ‘x’, cp_element
will first check for an element named ‘x/e’ before looking for the global ‘e’ element. The
function uses its context argument, an element pointer, to determine both the relevant
router object and any compound element context.

More explicitly, the cp_element function uses the following procedure to search for an
element named str:

1. Set prefix to context->id().

2. Remove the final component of prefix.

3. Search for an element named ‘prefixstr’ in context->router(). If one is found, return
it.

Chapter 7: Configuration Strings 70

4. Otherwise, no element was found. If prefix is already empty, parsing fails; report an
error to errh and return a null pointer. Otherwise, return to step 2.

FunctionElement * cp element (const String &str, Element *context,
ErrorHandler *errh)

Returns a element named str in context’s router configuration. str is first processed
as by cp_unquote. context determines both the relevant router configuration and
any compound element context. Returns a null pointer if no element is found; if errh
is nonnull and no element is found, additionally reports an error to errh.

A variant function does not perform a lexically scoped search, so its str argument must
contain a fully-qualified element name.

FunctionElement * cp element (const String &str, Router *router,
ErrorHandler *errh)

Returns a element named str in router. str is first processed as by cp_unquote.
Returns a null pointer if no element is found; if errh is nonnull and no element is
found, additionally reports an error to errh.

7.4.9 Handlers

The cp_handler functions parse a handler specification, such as ‘e.config’, into the
relevant pair of element and handler ID. Unlike most other parsing functions, it can report
errors to an ErrorHandler, if one is supplied.

Most handler specifications consists of an element name and a handler name separated by
a period: ‘element.handler’. The simplest cp_handler function parses such a specification
into an element pointer, corresponding to element, and the handler name, handler. Like cp_
element (see Section 7.4.8 [Parsing Elements], page 69), cp_handler uses a lexically-scoped
search to find the element corresponding to a given name.

Click also supports a few global handlers, such as ‘config’. cp_handler will also parse
global handler names, returning null for the element pointer.

Parsing Functionbool cp handler (const String &str, Element *context,
Element **result element, String *result hname, ErrorHandler *errh)

Parses str into a handler specification, storing the resulting element (if any) in *re-
sult element and handler name in *result hname. str is first processed as by cp_

unquote. context determines both the relevant router configuration and any com-
pound element context. Returns true if and only if str contained a valid handler
specification whose element part named an actual element. Note that this function
will not check whether *result element actually has a handler named *result hname—
or, for global handlers, whether the global handler *result hname actually exists.

The other cp_handler variants ensure that the input string names an actual handler.
These variants are useless until handlers are added to the router configuration. Therefore,
they should be called in elements’ initialize methods, not their configure methods,
since handlers are not added until initialize time (see Section 5.10 [Initialization Phases],
page 50).

Chapter 7: Configuration Strings 71

Parsing Functionbool cp handler (const String &str, Element *context,
Element **result element, int *result hid, ErrorHandler *errh)

Parses str into a handler specification, storing the resulting element in *result element
and handler ID in *result hid. This function just calls the simpler cp_handler, above,
then checks that the resulting element has the named handler.

Parsing Functionbool cp handler (const String &str, Element *context,
bool need read, bool need write, Element **result element, int *result hid,
ErrorHandler *errh)

Similar, but additionally checks for read and/or write handlers. If need read is true,
then str must name a valid read handler; if need write is true, then str must name a
valid write handler. Returns false if these checks aren’t met.

7.4.10 Miscellaneous

The cp_seconds_as and cp_timeval functions parse strings into time.

Parsing Functionbool cp seconds as (int p, const String &str, int *result)
Parses str as a possibly fractional length of time in seconds. The returned result
is measured in (seconds ∗ 10−p); for example, if p is 3, then result is measured in
milliseconds, and cp_seconds_as(3, "8", result) stores 8000 in *result.

Str may contain an optional time unit suffix. Valid units are ‘h’ or ‘hr’ for hours,
‘m’/‘min’ for minutes, ‘s’/‘sec’ for seconds, ‘ms’/‘msec’ for milliseconds, ‘us’/‘usec’
for microseconds, and ‘ns’/‘nsec’ for nanoseconds. For example, cp_seconds_as(0,
"1h", result) stores 3600 in *result.

Negative values are not allowed.

Parsing Functionbool cp seconds as milli (const String &str, int *result)
Parsing Functionbool cp seconds as micro (const String &str, int *result)

Same as cp_seconds_as(3, s, result) and cp_seconds_as(6, s, result),
respectively.

Parsing Functionbool cp timeval (const String &str, struct timeval *result)

Parses str as a struct timeval representing some number of seconds and microsec-
onds. Textually, this looks like a nonnegative real number with 6 decimal digits of
fraction. Stores the integer part of the result in result->tv_sec and the fraction
part in result->tv_usec. Basically equivalent to cp_unsigned_real10(str, 6, 0,

&result->tv_sec, &result->tv_usec).

7.5 Parsing Argument Lists

7.5.1 Concepts

Chapter 7: Configuration Strings 72

7.5.2 Global Initialization

The cp_va functions maintain some private global state—for example, a list of the
data types they understand. You must explicitly initialize this state with cp_va_static_

initialize before calling any other cp_va function. You can free this state, if you’d like,
with cp_va_static_cleanup.

Functionvoid cp va static initialize ()
Call this function exactly once, at the beginning of the program, before calling any
other cp_va functions.

Functionvoid cp va static cleanup ()
Call this function exactly once, at the end of the program. It is an error to call any
cp_va function after calling cp_va_static_cleanup.

Constant Storage Arguments

cpArgument String *result
cpString String *result
cpWord String *result
cpKeyword String *result

cpByte unsigned char *result
cpShort short *result
cpUnsignedShort unsigned short *result
cpInteger int *result
cpUnsigned unsigned *result

cpReal2 int frac bits, int *result
cpUnsignedReal2 int frac bits, unsigned *result
cpReal10 int frac digits, int *result
cpUnsignedReal10 int frac digits, unsigned *result

cpIPAddress IPAddress *result
cpIPPrefix IPAddress *result address, IPAddress *result mask
cpIPAddressOrPrefix IPAddress *result address, IPAddress *result mask
cpIPAddressList IPAddressList *result
cpEtherAddress EtherAddress *result
cpIP6Address IP6Address *result
cpIP6Prefix IP6Address *result address, IP6Address *result mask
cpIP6AddressOrPrefix IP6Address *result address, IP6Address *result mask

cpElement Element **result
cpHandlerName Element **result element, String *result hname
cpHandler Element **result element, int *result hid
cpReadHandler Element **result element, int *result hid
cpWriteHandler Element **result element, int *result hid

cpBool bool *result
cpSeconds int *result
cpSecondsAsMilli int *result
cpSecondsAsMicro int *result

Chapter 7: Configuration Strings 73

cpTimeval struct timeval *result

Constant Corresponding Parsing Function

cpArgument *result = arg

cpString cp_string(arg, result)
cpWord cp_string(arg, result)
cpKeyword cp_keyword(arg, result)

cpByte cp_unsigned(arg, &tmp), check range, store in result
cpShort cp_integer(arg, &tmp), check range, store in result
cpUnsignedShort cp_unsigned(arg, &tmp), check range, store in result
cpInteger cp_integer(arg, result)
cpUnsigned cp_unsigned(arg, result)

cpReal2 cp_real2(arg, frac bits, result)
cpUnsignedReal2 cp_unsigned_real2(arg, frac bits, result)
cpReal10 cp_real10(arg, frac digits, result)
cpUnsignedReal10 cp_unsigned_real10(arg, frac digits, result)

cpIPAddress cp_ip_address(arg, result, context)

cpIPPrefix cp_ip_prefix(arg, result address, result mask, false,

context)
cpIPAddressOrPrefix cp_ip_prefix(arg, result address, result mask, true,

context)
cpIPAddressList cp_ip_address_list(arg, result, context)

cpEtherAddress cp_ether_address(arg, result, context)

cpIP6Address cp_ip6_address(arg, result, context)

cpIP6Prefix cp_ip6_prefix(arg, result address, result mask, false,

context)
cpIP6AddressOrPrefix cp_ip6_prefix(arg, result address, result mask, false,

context)
cpElement cp_element(arg, context, result)
cpHandlerName cp_handler(arg, context, result element, result hname)
cpHandler cp_handler(arg, context, result element, result hid)
cpReadHandler cp_handler(arg, context, true, false, result element,

result hid)
cpWriteHandler cp_handler(arg, context, false, true, result element,

result hid)
cpBool cp_bool(arg, result)
cpSeconds cp_seconds_as(0, arg, result)
cpSecondsAsMilli cp_seconds_as(3, arg, result)
cpSecondsAsMicro cp_seconds_as(6, arg, result)
cpTimeval cp_timeval(arg, result)

Chapter 8: Tasks 74

8 Tasks

Click schedules a router’s CPU or CPUs with one or more task queues. These queues
are simply lists of tasks, which represent functions that would like access to the CPU. Tasks
are generally associated with elements. When scheduled, most tasks call some element’s
run_task method.

Click tasks are represented by Task objects. An element that would like special access
to a router’s CPU should include and initialize a Task instance variable.

Tasks are generally called very frequently, up to tens of thousands of times per second.
For infrequent events, it is far more efficient to use timers than to use tasks; see Chapter 9
[Timers], page 80.

Executing a task should not take a long time. The Click driver loop is not currently
adaptive, so very long tasks can inappropriately delay timers and other periodic events. We
may address this problem in a future release, but for now, keep tasks short.

The Task class is defined in the <click/task.hh> header file.

8.1 Task Initialization

Task initialization is a two-step process. First, when a Task object is constructed, you
must supply information about the function that it should call when it is scheduled. Second,
when the router is initialized, you must initialize the task by supplying it with the relevant
router. (You must initialize the task even if it will not be scheduled right away.)

Task has two constructors. One of them asks the task to call an element’s run_task

method when scheduled; the other asks it to call an arbitrary function pointer.

Constructor on TaskTask (Element *e)
When this task is scheduled, call e->run_task().

Constructor on TaskTask (TaskHook hook, void *thunk)
When this task is scheduled, call hook(this, thunk). The hook argument is a func-
tion pointer with type void (*)(Task *, void *).

The Task::initialize method places the task on a router-wide list of Tasks, associates
the task with a particular task queue, and, optionally, schedules it. Typically, an element’s
initialize method calls Task::initialize (see Section 5.7 [initialize], page 48).

Method on Taskvoid initialize (Router *r, bool scheduled)
Method on Taskvoid initialize (Element *e, bool scheduled)

Attaches the task to the router object r (or e->router()). Additionally sets the
task’s tickets to a default value, and schedules the task if scheduled is true.

Many elements call ScheduleInfo::initialize_task instead of calling
Task::initialize directly. This method queries any ScheduleInfo elements in the
configuration to determine the task’s scheduling parameters, sets those parameters, and
calls Task::initialize to schedule the task. The ScheduleInfo::initialize_task

method is defined in the <click/standard/scheduleinfo.hh> header file.

Chapter 8: Tasks 75

Static Method on ScheduleInfovoid initialize task (Element *e, Task *task,
bool schedule, ErrorHandler *errh)

Sets task’s scheduling parameters as specified by any ScheduleInfo elements in the
router configuration. The element e is used to find the correct router, and provides the
relevant name for parameter lookup—the user supplies parameters to ScheduleInfo by
element name. If schedule is true, also schedules task on e->router()’s task queue.
Reports any errors to errh.

Static Method on ScheduleInfovoid initialize task (Element *e, Task *task,
ErrorHandler *errh)

A synonym for initialize_task(e, task, true, errh).

Static Method on ScheduleInfovoid join scheduler (Element *e, Task *task,
ErrorHandler *errh)

A synonym for initialize_task(e, task, true, errh).

The initialize_task method is generally called like this:

int
SomeElement::initialize(ErrorHandler *errh)
{

ScheduleInfo::initialize_task(this, &_task, errh);
}

Here, _task, a Task object, is one of SomeElement’s instance variables.

8.2 Scheduling Tasks

The user may take a task off its task queue with the unschedule method, and place
it back onto its task queue with the reschedule method. As tasks move to the head of
the task queue, they are unscheduled and their callbacks are called. Within these callback
functions, the user will typically call fast_reschedule, which is like reschedule without
the locking overhead.

Method on Taskvoid unschedule ()
Unschedules the task by removing it from its task queue. Does nothing if if the task
is currently unscheduled, or if it was never initialized. When this function returns,
the task will not be scheduled.

Method on Taskvoid reschedule ()
Reschedules the task by placing it on its task queue. If the task is already scheduled,
then this method does nothing.

All three functions lock the task queue before manipulating it. This avoids corruption
when there are multiple processors executing simultaneously. If reschedule cannot im-
mediately lock a task queue—perhaps because it is being used on another processor—then
they register a task request, which will be executed in the near future. In contrast, the
unschedule function will wait until it can lock the task queue.

Chapter 8: Tasks 76

Sometimes unscheduling a task is not enough: you don’t want the task to run, even
if someone else (an upstream queue, for example) were to reschedule it. The strong_

unschedule method both unschedules the task and shifts the task to the quiescent thread,
which never runs. Thus, a strong_unscheduled task will not run until someone calls
strong_reschedule, which reschedules the task on its original preferred thread.

Method on Taskvoid strong unschedule ()
Unschedules the task by removing it from its task queue and shifting it to the quies-
cent thread. Does nothing if if the task is currently unscheduled, or if it was never
initialized. When this function returns, the task will not be scheduled.

Method on Taskvoid strong reschedule ()
Reschedules the task by placing it on the task queue corresponding to its thread
preference. The task will not be scheduled immediately upon return, but it will
become scheduled soon—strong_reschedule uses a task request to avoid locking.

The fast_reschedule method avoids locking overhead in the common case that a task
must be rescheduled from within its callback.

Method on Taskvoid fast reschedule ()
Reschedules the task by placing it on its preferred task queue. This method avoids
locking overhead, so it is faster than reschedule.

Caution: You may call a Task’s fast_reschedule method only from
within its callback function. For instance, if an element has a task,
_task, that calls the element’s run_task method when scheduled, and
if run_task is called only by that task’s callback, then that element’s
run_task method should call _task.fast_reschedule() instead of _
task.reschedule().

The fast_unschedule method is to unschedule as fast_reschedule is to reschedule.
It is rarely used, since tasks are automatically unscheduled before they are run.

Method on Taskvoid fast unschedule ()
Unschedules the task by removing it from its task queue. Does nothing if if the task
is currently unscheduled, or if it was never initialized. This method avoids locking
overhead, so it is faster than unschedule.

Caution: You may call a Task’s fast_unschedule method only from
within its callback function.

8.3 Tickets

Click tasks are scheduled using the flexible, lightweight stride scheduling algorithm.1

This algorithm assigns each task a parameter called its tickets. A task with twice as many
tickets as usual is scheduled twice as frequently.

Tasks have methods for querying, setting, and adjusting their tickets.

1 For more information, see MIT Laboratory for Computer Science Technical Memo MIT/LCS/TM-528,
Stride scheduling: deterministic proportional-share resource management, by Carl A. Waldspurger and
William E. Weihl, June 1995.

Chapter 8: Tasks 77

Method on Taskint tickets () const

Returns this task’s tickets. This number will be at least 1 and no more than
Task::MAX_TICKETS, which equals 32768.

Method on Taskvoid set tickets (int t)
Sets this task’s tickets to t. The t parameter should lie between 1 and Task::MAX_

TICKETS, inclusive; numbers outside this range are constrained to the nearest valid
value.

Method on Taskvoid adj tickets (int delta)
Equivalent to set_tickets(tickets() + delta).

8.4 Choosing a Thread

Each task belongs to some task queue, which generally corresponds to a thread of control.
Single-threaded Click has one active thread, and therefore one task queue, but multithreaded
Click can have an arbitrary number of threads. Either Click hasa special thread, the
quiescent thread, numbered −1; tasks belonging to the quiescent thread never run, whether
or not they are scheduled. Every task starts out belonging to the first thread, thread 0.
The change_thread method moves a task to another thread.

Method on Taskvoid change thread (int thread id)
Move this task to thread thread id, which should be a number between −1 and the
relevant Router’s nthreads().

The task is scheduled on the new task queue if and only if it was scheduled on the
old task queue.

Like reschedule, change_thread must lock the task queue before manipulating it.
(Unlike those methods, change_thread must lock two task queues, the old and the new.)
If change_thread cannot lock a task queue, then it registers a task request that will be
executed in the near future. This implies that a task may remain on the same thread, or
become unscheduled, for some time after change_thread is called.

8.5 Task Status Methods

These methods let a user check various properties of a task—for instance, whether it is
initialized or scheduled.

Method on Taskbool initialized () const

Returns true iff the task has been initialized—that is, if it is associated with some
router.

Method on Taskbool scheduled () const

Returns true iff the task is currently scheduled on some task queue.

Chapter 8: Tasks 78

Method on TaskRouterThread * scheduled list () const

Returns the task queue with which this task is associated. Even unscheduled tasks
are associated with some task queue; this is the task queue on which the task will be
placed if reschedule is called.

Method on TaskTaskHook hook () const

Returns the callback function that is called when the task is scheduled. If the task is
associated with some element, this method returns a null pointer.

Method on Taskvoid * thunk () const

Returns the extra data passed to the callback function when the task is scheduled.

Method on TaskElement * element () const

If the task is associated with some element, this method returns that element. Oth-
erwise, returns a null pointer.

8.6 Task Handlers

By convention, elements with tasks should provide handlers that access task properties.
The Element::add_task_handlers method automatically adds these handlers for a given
Task object.

Method on Elementvoid add task handlers (Task *task,
const String &prefix = String())

Adds task handlers for task to this element. The string prefix is prepended to every
handler name.

This method adds at least the following handlers:

‘scheduled’
Returns a Boolean value saying whether the task is currently scheduled on some
task queue. Example result: "true\n".

‘tickets’ Returns or sets the task’s currently allocated tickets. This handler is only
available if Click was compiled to support stride scheduling. Example result:
"1024\n".

‘thread preference’
Returns the task’s thread preference. This handler is only available on multi-
threaded Click. Example result: "2\n".

8.7 Task Cleanup

You generally don’t need to worry about destroying Task objects: they are automatically
unscheduled and removed when the Router is destroyed. This only works if the Task objects
have the same lifetime as the Router, however. This includes the normal case, when Tasks
are element instance variables. If you create and destroy Task objects as the router runs,
however, you will need to call the following method before deleting the Task.

Chapter 8: Tasks 79

Method on Taskvoid cleanup ()
Cleans up the Task object.

Chapter 9: Timers 80

9 Timers

Click timers, like Click tasks, represent callback functions that the driver calls when
appropriate. Unlike tasks, however, you schedule timers to go off at a specified time.
Timers are intended for more infrequent and/or slower tasks.

As with Task, most Timer objects are declared as instance variables of elements and
scheduled when needed.

Timers may be scheduled with microsecond precision, but on current hardware, only
millisecond precision is likely to be achievable.

The Timer class is defined in the <click/timer.hh> header file.

9.1 Timer Initialization

Timer initialization resembles task initialization. When the timer is constructed, you
must supply it with information about its callback function. Later, after the router is
initialized, you must initialize and, optionally, schedule it.

Constructor on TimerTimer (Element *e)
When this timer goes off, call e->run_timer().

Constructor on TimerTimer (Task *t)
When this timer goes off, call t->reschedule().

Constructor on TimerTimer (TimerHook hook, void *thunk)
When this timer goes off, call hook(this, thunk). The hook argument is a function
pointer with type void (*)(Timer *, void *).

Method on Timervoid initialize (Router *r)
Method on Timervoid initialize (Element *e)

Attaches the timer to the router object r (or e->router()).

Typically, an element’s initialize method (see Section 5.7 [initialize], page 48) calls
Timer::initialize, and possibly one of the schedule functions described below.

9.2 Scheduling Timers

A variety of methods schedule timers to go off at specified times. The basic method is
schedule_at, which schedules the timer for a specified time. Subsidiary methods schedule
the timer relative to the current time (the schedule_after methods), or relative to the last
time the timer was scheduled to run (the reschedule_aftermethods). Finally, unschedule
unschedules the timer.

All schedule and reschedule functions first unschedule the timer if it was already
scheduled.

The reschedule methods are particularly useful for timers that should occur periodi-
cally. For example, this callback function will cause its timer to go off at 20-second intervals:

Chapter 9: Timers 81

void timer_callback(Timer *t, void *) {
t->reschedule_after_s(20);

}

Method on Timervoid schedule at (const struct timeval &when)
Schedule the timer to go off at when. You must have initialized the timer earlier.

Method on Timervoid schedule now ()
Schedule the timer to go off as soon as possible.

Method on Timervoid schedule after (const struct timeval &delay)
Schedule the timer to go off delay after the current time.

Method on Timervoid schedule after s (uint32_t delay)
Schedule the timer to go off delay seconds after the current time.

Method on Timervoid schedule after ms (uint32_t delay)
Schedule the timer to go off delay milliseconds after the current time.

Method on Timervoid reschedule after (const struct timeval &delay)
Schedule the timer to go off delay after it was last scheduled to go off. If the timer was
never previously scheduled, this method will schedule the timer for some arbitrary
time.

Method on Timervoid reschedule after s (uint32_t delay)
Schedule the timer to go off delay seconds after it was last scheduled to go off.

Method on Timervoid reschedule after ms (uint32_t delay)
Schedule the timer to go off delay milliseconds after it was last scheduled to go off.

Method on Timervoid unschedule ()
Unschedules the timer, if it was scheduled.

9.3 Timer Status Methods

These methods return information about a timer, including when it is scheduled to
expire.

Method on Timerbool initialized () const

Returns true iff the timer has been initialized with a call to initialize(). Unini-
tialized timers must not be scheduled.

Method on Timerbool scheduled () const

Returns true iff the timer is scheduled to expire some time in the future.

Method on Timerconst struct timeval & expiry () const

Returns the time that the timer is set to expire. If the timer has never been scheduled,
the value is garbage. If the timer was scheduled but is not scheduled currently, the
value is most recently set expiry time.

Chapter 9: Timers 82

9.4 Timer Cleanup

You don’t need to worry about cleaning up Timer objects. They are automatically
unscheduled and removed when the Router is destroyed, and deleting a Timer automatically
removes it from any relevant lists. The following function is nevertheless provided for
consistency with Tasks, which do need to be cleaned up in certain circumstances (see
Section 8.7 [Task Cleanup], page 78).

Method on Timervoid cleanup ()
Cleans up the Timer object.

Chapter 10: Notification 83

10 Notification

Chapter 11: Coding Standards 84

11 Coding Standards

11.1 Upper and Lower Case in Names

Keep to the following consistent scheme for choosing between upper and lower case when
naming variables, types, and functions.

Classes Use mixed case with an initial capital letter and no underscores:
LookupIPRoute.

Methods Use all lower case with underscores separating words: negation_is_simple.

Constants Use all upper case with underscores separating words: TYPE_ICMP_TYPE.

Instance variables
Begin with an underscore, then use all lower case with underscores separating
words: _length.

Regular variables
Use all lower case with underscores separating words: i, the_handler.

Class variables
These variables are declared as static in the class header. Name them like
regular variables: nelements_allocated.

Functions Name them like methods: quicksort_hook.

Other types
This includes typedefs and enumerated types. Name them like classes:
CpVaParseCmd, ConfigurePhase.

There are exceptions to these guidelines. In particular:

• Instance variables in C structs—that is, classes with few methods whose instance vari-
ables are mostly public—may be named like regular variables, without a preceding
underscore. The same goes for the components of unions.

• Classes that act like simple types, such as uatomic32_t, take names similar to the
types they replace (in this case uint32_t).

11.2 Common Name Patterns

• Many instance variables have associated getter methods that return their values, and/or
setter methods that change their values. For an instance variable named _x, the getter
method should be named x() and the setter method should be named set_x().

• A variable or method which counts something is often named nobjects—for instance,
_nwarnings, ninputs(), _npackets.

• Use a bare ‘0’ for a null pointer, except where some ambiguity might arise (for example,
where an incorrect overloading might be selected).

Index 85

Index

(Index is nonexistent)

